
(-A63 l12 A GENER LIZED APPROACH TO EQUATION&L U IFIC TION(U) i
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER

UNCLASIFIEDSCIENCE K A VELICK AUG 95 MXT/LCS/TR-344

I R U N OLSIIED MO-9 3--5 2 F/0G121NL

25

:. L

I " ___________1.8_

1*261 *

-.-.

NATIONAL BUREAU OF STANDARDS
MVCOOPY RESOLUTION TEST CHART

. ..

".--- . .-- -----. .- - -. - -.---. % --'- .,-A .- ,:-. --.-,.:-.'-2- ,-, .","."-".'..,"2" - -,. .- . . ,- ,...i,-- -, -

MASN iS' I*, E
LAOAOY O STT EO

COPUE SCEC ECNLG

II/C/T -4

A EEALZDAPRAHT

EQUATONALUNIFIATIO

KatherineN1 AneYlc

AuS~t18

SECURITY CLASSIFICATION OF THIS PAGE (IeWhn Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_______________________________________ BEFORECOMPLETINGFORM

1. REPORT NUMBER 2 5 VT ACC SS0Oi 3)PIENTSC AT ALOG NUMBER

MIT/LCS/TR- 344 t,3/1 ~ L .-
At. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A Generalized Approach to Equational B.S. and M.S. Thesis
Unification August 1985 P

6. PERFORMING ORG. REPORT NUMBER

__[MIT/ LCS/TR- 344
*7. AUTHOR(@) 8 CONTRACT OR GRANT NUMEER(A,

*Katherine Anne Yelick DARPA/DOD
NOO0i 4-83-K- 0125

9. PERFORMING ORGANiZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA at WORK UN IT NUMBERS

MIT Laboratory for Computer Science
54 5 Technology Square
Cam,-bridqe, MA 02139_______________
I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD August 1935
1400 Wilson Blvd. 13. NUMBER 01: PAGES

Arlinoton. VA 22209 102
1 4. MONITORING AGENCY NAME d ADDRESS(tdillerent tram Controlling Oft1ce) 15. SECURITY CLASS (01 this 160ortI)

ONR/De ' artment of the Navy Unclassified
Information Systems Program Ia ELSIIAINONRDN

* Arlinciton, VA 22217 SCHEDULE

16, DISTRIBUT:ON STATEMENT (of this Report)

Approved for Public Release, distribution is unlimited.

17. DISTRIBUJTION STATEMENT (of the abstratt entered In Block 20. It differentl tramn Repefll

J Iim i te d

IS SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it nocesserv and Identify by block numberi

Unification, equational unification, equational theories, confined regular
theory, unification algorithm, automatic theorem proving, term rewriting,
resol ution.

20 ABSTRACT (Continue on reverse aid* It necesary and Identify by block nutrber) \

Given a set of equtational axioms and two terms containling function symbols and variables. the
eauational unification preblern is to find a uniform replacement of term!- for the variables Mtat m:-ikes
tMe terns provably *(ulfrom the axioms In the variable only case. thle two term,- contain only
variables and function -;vnibolz; from the axioms. inl the general case. the terms may contain sYnibolS
not appearr" .~in the3 amom0n1. there may be more than one Instance of a set of axionis, and there maiy

1be more that, one set of axioms.

* DD I~~v 1F 7 AIR:oc kNo 41IOSO Enc lass if ied

C In 7- 1. Ai* ... *

Uncl a-i fird
. ..LLURITY CLASSiFiC&TO% Of THIS PAGErWhen Date Enterod)

This thesis presents a method for combining equational unification algorithms to handle the terms
with "mixed" sets of function symbols. For example, given one algorithm for unifying associative.
commutative operators, and another for unifying commutative operators, our algorithm provides a
method for unifying terms containing both kinds of operators. It is based on a general strategy for
decomposing terms and combining unifiers. We restrict our attention to sets of axioms whose func-
tion symbols are pairwise disjoint.

A simplifying assumption is that we are working only with confined regular equational theories, a class
of theories defined in this thesis. We present a unification algorithm that solves the general case
unification problem for any combination of these theories, given variable-only case algorithms for the
theories. The algorithm is proven totally correct. The termination proof is a generalization of Fages'
proof of termination for associative-commutative unification.

Our algorithm has been implemented as part of a larger system for generating and reasoning about

!equational term rewriting systems.

C .

..V

Unclassified

.2.

Unannounced [..-v .TIGeneralized Approach to

Equational Unification By _ _ _ __-
Distribution/
Availability Codes

Avail and/or %" "

Katherine Anne Yelick Dist Special

Abstract

/ Given a set of equational axioms and two terms containing function symbols and variables, the

equational unification problem is to find a uniform replacement of terms for the variables that makes

the terms provably equal from the axioms. In the variable-only case, the two terms contain only

"" variables and function symbols from the axioms. In the general case, the terms may contain symbols

not appearing in the axioms, there may be more than one instance of a set of axioms, and there may

be more than one set of axioms. .

This thesis presents a method for combining equational unificatin algorh to handle the terms

with mixed ' sets of function symbols. For example, given one lgorithm for unifying associative-

commutative operators, and another for unifying commutative op ators, ow algorithm provides a

method for unifying terms containing both kinds of operators. It is based on a general strategy for

decomposing terms and combining unifiers.'We restrict ou-attentioto sets of axioms whose func- - . .-

tion symbols are pairwise disjoint. .

A simplifying assumption is that we are working only with confined regular equational theories, a class

of theories defined in this thesis. We present a unification algorithm that solves the general case

unification problem for any combination of these theories, given variable-only case algorithms for the

theories. The algorithm is proven totally correct. The termination proof is a generalization of Fages' 4
proof of termination for associative-commutative unification.

Our algorithm has been implemented as part of a larger system for generating and reasoning about

equational term rewriting systems.

Thesis suparvisor: John V. Guttag
*[Title: Associate Professor of Computer Science and Engineering

Keywords: Unification. Equational Unification, Equational Theories, Confined Regular Theory,

Unification Algorithm, Automatic Theorem Proving, Term Rewriting, Resolution

This thesis was submitted to the Department of Electrical Engineering and Computer Science on -

August 1, 1985 in partial fulfillment of the requirements for the Degrees of Bachelor of Science and

Master of Science in Computer Science.

1. '- ..

Acknowledgments

I would like to thank my advisor, John Guttag, for his support and encouragement and for his
unfailing confidence in this work. John's comments on organization and presentation have helped
make this thesis readable, and his prompt and careful reading of my drafts has been invaluable in the
completion of this thesis.

In the early stages of this work, Randy Forgaard taught me the basics of term rewriting and
unification, and Gene Stark showed interest in solving the problems, and contributed ideas that
directly influenced the structure of the completeness proof. A discussion with Jean-Pierre Jouan- -

naud, Claude Kirchner, and Helene Kirchner on the common properties of E-unification algorithms" '. -..-.

spurred the idea of a general unification algorithm. Pierre Lescanne and Paris Kanellakis answered a -"* "
stream of questions related to theory and logic, and Val Breazu encouraged me to addrebs the
problem of proving termination, which would otherwise have been left for future work. Since taring
over the task of developing and maintaining REVE.2, Dave Detlefs has often lent a sympathetic ear .. *.

and technical advice.

My friends have been a great help in keeping my spirits up. I commend the members of the
graduate crew team for their unique sense of humor and enthusiasm for rowing. Joe Zachary, Brian
Coan, Julie Lancaster, and Ron Kownacki served as an audience for both technical and non-
technical discussions. I would especially like to thank Jennifer Lundelius, Jim Restivo, and Tom
Wanuga, who provided an important mix of inspiration, sympathy, and unfailing good humor.

Finally, I am very grateful to my parents, who have been patient and supportive during my under-
graduate and graduate studies.

. • •. .* -

- .- ,-.

2*

% %-- -----

.-.-. ,.*.

Table of Contents

Chapter One: Introduction 7 ,..-

1.1 Organization of the Thesis 8 - -"
1.2 Definitions 9
1.3 Classical Unification 10
1.4 Equational Unification 12 -

1.4.1 Applications 12
1.4.2 Equational Theories 14 '
1.4.3 A Problem Statement 16

1.4.3.1 Properties of Unification Algorithms 16
1.4.3.2 Classifying Solutions to the Unification Problem 18

1.5 Related Work 19
1.5.1 Single Theory Algorithms 19
1.5.2 Narrowing 24
1.5.3 Combining Theories 24

Chapter Two: A Generalized Unification Algorithm 26

2.1 A Generalized Approach 26
2.1.1 Partitioning Equational Theories 26
2.1.2 Some Basic Functions 28

2.1.2.1 Homogeneous Terms 29
2.1.2.2 Unification of Substitutions 30

2.1.3 Restrictions 31
2.1.3.1 Confined Theories 31
2.1.3.2 Regular Theories 31
2.1.3.3 Strict and Strongly Complete Theories 32 ,.

2.2 The Algorithm 34
2.3 An Example 36
2.4 Difficulties in Exending CR-unify 38

Chapter Three: Proof of Total Correctness 42

3.1 An Overview 42
3.1.1 Definitions for Terms in E 44
3.1.2 Properties of Confined and Regular Theories 46

3.1.2.1 Confined Theories 46

3.1.2.2 Regular Theories 48
3.2 Consistency 52
3.3 Completeness 54 0'

3.3.1 A New Homogenizing Operation 54
3.3.1.1 Homogeneity Using U 55
3.3.1.2 The Inverse Substitution 59

3.3.2 The Completeness Lemmas 61
3.3.3 A Proof of Completeness 63

3.4 Proof of Termination 66
3.4.1 Noetherian Induction 67

3
. °

3.4.2 A Noetherian Ordering for E-Unification 67

3.4.3 Some Properties of the Ordering 68 q

3.4.4 The Proof 73
A.

Chapter Four: Conclusions 79

4.1 Contributions 79*
4.2 Future Work 8

4.2.1 Efficiency Issues 83
4.2.2 Removing Restrictions on the Theories 85

Appendix A: Protection of Variables in CR-unify 86

Appendix B: Glossary of Terms 91

Appendix C: Special Symbols 95.

4L

Table of Figures

Figure 1-1 : A Classical Unification Algorithm 11
Figure 1-2: A Prolog Program with Commutativity 13
Figure 1-3: Some Common Equational Theories 22
Figure 1-4: Known Unification Algorithms 23

Figure 2-1: A Partitioned Presentation 28
Figure 2-2: Procedure map-unify for Unification of Substitutions 30
Figure 2-3: The CR-unify Procedure for Equational Unification 35
Figure 3-1: Diagram Exemplifying Correctness Properties 43 --

Figu re 3-2: A Term and its Significant Subterms 45
Figu re 3-3: Commuting Diagram for the Universal E-preserving Substitution 60
Figure 3-4: A Diagram of the Completeness Lemma 62
Figure 4-1: A Careful Description of the CR-unify Procedure 88
Figure 4-2: A Careful Description of the map-unify Procedure 89

5

-.......................

- - - --..-- ,.-- .-. °

Theorems, Lemmas, and Propositions

Lemma 1: E is confined if and only if E* is confined 47kN

Lemma 2: 1 =s =* t.head =s.head 47
E

Theorem 1: t.head~s.head =* t and s are not unifiable 48

Lemma 3: E is reguflar if and only if E* is regular 48

Lemma 4: t=s V V vEV, Pa rSefs(i-, I) = ParSets(v, s) 49
E

Lemma 5: t=s~ V I'<t3 s'-<,1 s such that' (=s' 50
E - -E

Lemma 6: t-<r--<Is =z t*s 51IE
Theorem II: r-<f s & % Cujr) vand s are not unifiable 52
Lemma 7: Consistency Lemma: pf= p & vap =aoy at =as 52

E. E E
Theorem III: CR-unify is Consistent 53

Proposition 1: The U-HorngMap form of the Preserving Substitution Maps t to 7 58

Lemma 8: U Homog Commutes with Application of Substitutions 56

Lemma 9: 002=(12

Lemma 10:: =s =~=s58 -

E E.
Proposition 2: IL Preserves Homogenized Terms Within E* 59

Lemma 11: uop = po* 60
E

Lemma 12: If t and s are E-unifiable then land are E.-unifiable. 61

Lemma 13: Completeness Lemma: opp =aooy 62 -

E
Theorem IV: CR-unify is Complete 63

Lemma 14: The -<c Ordering is Noetherian 68

Lemma 15: Complexity Decreases for Non-variable Significant Subterms 68

Lemma 16: Complexity Decreases for Variable with More than One Parent 69

Lemma 17: Elementary Non- Increasing Substitution do not Increase Complexity 70

Lemma 18: Non-increasing Substitutions do not Increase Complexity 72

Lemma 19: Non-increasing Substitutions on Subterms are Non-increasing 72

Theorem V: CR-unity Terminates 74

7F

%- -

Chapter One

Introduction

The unif ic in problems are a class of problems involving a general form of pattern matching. As

such. they Occur independeniiy in many contexz that involve symbol manipulation, the most

pronounced of these being automated theorem proving. A unification problem can be formulated as

a problem on strings graphs. or algebraic objects such as sets or groups.

The classical unification problem is: given two terms containing function symbols and variables. e.L

find a uniform replacement of terms for the variables that makes the two terms syntactically identical.

Equational unification, or E unification extends the classical problem to solving an equation in an

equational theory That is given a set of equational axioms. find a substitution for the variables in the - -

two terms that makes them provably equal from the set of axioms describing the theory.

In this thesis. we develop a framework for automatically combining E-unification algorithms for

independent sets of operators by carefully analyzing the E-unification process in general and study-

ing a number of equational theories in particular. Our approach is generalized in the following sense:

Given a unification algorithm for E1 , and a unification algorithm for E2, we can in some cases
automatically generate an algorithm for the combined theory of E and E2 such that the resulting

algorithm will unify terms with mixed set of operators.

Unification was first described by Herbrand in 1930, and was first put to practical use by Robinson . -

as a basic step in resolution [Robinson 65], an inference rule used as a complete proof system for first

order predicate calculus. Because of its simplicity and power, the resolution rule is often used as the

basis for automatic theorem provers and is also exploited in implementing the logic programming

language Prolog [Kowalski 74, Clocksin 81]. In Prolog, unification acts as a procedure call

mechanism, allowing procedures to be invoked when the arguments fit the pattern given in the

procedure head.

Unification is also used in type inference algorithms for languages such as ML [Milner 781, in

which type inference is used as a compromise between strictly typed and typeless languages. These - .

languages gain expressive power over explicitly typed languages that enforce strong type checking,

because the type inference provides the programmer with a mechanism for a certain kind of polymor- .. . -

phism [Mitchell 84].

7p ° ,

Unification is also an important operation in term rewriting systems. These systems perform

reasoning by compiling equations into a set of rewrite rules. This compilation, known as the comple-

tion process. involves ordering each equation into a directed rule, finding pairs of rules that could

apply to a single term, and sometimes adding new rules when such critical pairs are found. Unifica- .. ,

tion is used in finding the pairs of overlapping rules and in generating the additional rules. If the

-,. completion process terminates successfully, the resulting system is called convergent, meaning the
rules, applied in any order to a given input, will always result in a unique answer [Knuth 70]. A

convergent rewriting system is a complete and terminating decision procedure for determining

whether or not an equation is implied by the original set of equations. Term rewriting systems can be

used as a basis for automatic theorem provers [Huet 82, Kapur 84, Goguen 80, Hsiang 82]. These

theorem provers have been used for applications such as checking formal specifications [Goguen

79, Guttag 83, Kownacki 84], interpreting logic programming languages [Dershowitz 83a, Fribourg

84), reasoning about relational databases [Cosmadakis 85], and checking properties of petri nets

[Choppy 851.

The unification algorithm described in this thesis was initially motivated by the need to extend the

domain of applications for which the REVE term rewriting system generator [Lescanne 83, Forgaard

84a] is useful. Because unification problems occur in many different applications, there are both

theoretical and pragmatic reasons for developing a better understanding of the problem and its

solutions. A condensed version of the work described in this thesis appeared previously in [Yelick

85].

* NO 2

1.1 Organization of the Thesis

The remainder of this chapter is devoted to giving the background necessary for understanding

unification, both classical and equational, and discussing related work in the field. The rest of the
thesis is divided into three chapters. Chapter 2 presents our generalization of the problem along with

some some restrictions, gives our algorithm, and goes through a non.trivial example. Chapter

3 presents a proof of total correctness for the generalized algorithm. Chapter 4 presents a summary

of our conclusions, a description of the implementation, and ideas for future work. The reader can

get of clear picture of our approach, ignoring the question of why the algorithm works, by reading

Chapters 2 and 4. Three appendices are included. Appendix A gives some additional technical

details of the proof of correctness, Appendix B gives a glossary of some terms used in this thesis, and

Appendix C gives a list of special symbols and there uses.

8
-- : .. ,0 .,

1.2 Definitions

The following definitions are consistent with the definitions of [Fages 84] and [Huet 80a]. We

begin with basic definitions of terms and functions on terms. J..

Let V be a countable set of variables and F be a family of function symbols with associated arity -,.\.

such that V and F are disjoint. We recursively define the set of terms, T(F, V), as either a variable or a

function symbol of arity n, followed by n terms. We assume the sets V and F to be fixed and, thus, use

T in place of T(F, V) without ambiguity. Function symbols of arity zero, called constants, will be . .

denoted by the letters a b. c, d, and numerals 0. 1, to be distinguished from variables, denoted by the

letters u. v. v x. y, z. For readability, we will use the symbols, + *, and * as binary infix operators.

Examples of terms are f(x, a), / (x - 0), and y + 1.

Given a term, t, let T"(t) be the set of variables in t and IT(t) be the set of function symbols in t. The

root symbol of the graph representation of a term, t, will be denoted t.head-t.head is a variable if t is

a variable, and a function symbol if t is not a variable. Terms formed from function symbols alone, i.e.,

containing no variables, are called ground terms and are denoted by G.

An occurrence in a term names a node within the tree structure of the term; occurrences are

represented by strings of integers, including the empty string, e. The set of occurrences of a term,

denoted O(t), is defined as follows:

1. If t is a variable or constant, then O(t) = {e}.

2. If t =f(ti tn), then O(t) = {c}U{i.o 11 -5 i:< n & oEO(ti))

An occurrence can be used to index into a term as follows:

1. t/le= t

2.f(t1.... tn)/i.o = ti/O

An occurrence is said to be proper if it is not the empty occurrence and strict if the subterm at that

occurrence is not a variable. --

A substitution is a mapping from variables to terms, extended to an endomorphism (a homomor-

phism from a set to itseli) on terms. I.e., if a is a substitution then qf(tI tn) = f(at 1 ... at). ASn n.
substitution will be denoted by a set of variable to term mappings, (v +-t ,v2 -t2 ,...} , where all variables W 0

outside the set are implicitly mapped to themselves. The identity substitution, i.e., the substitution

mapping every variable to itself, will be written t. The universe of substitutions will be denoted S. We

define the domain, J, of a substitution, a, as follows: 9(o) = fI av # v). Note that this differs from" "

the usual notion of a function's domain, since it contains only those variables that are not mapped to

9

% %%

the..s..--s The %i: e, .A. of a substitution is defined as .(a) U (a,), and the range

6' a as 1(a) = I -(!). A substitution. a, can be restricted to a set of variables, V, written F

a v by ma;:ping all variables outside V to themselves, a IV = { -a i I r' EV}. ,.,%e': .,.=

Thus. if a t - -(:)). then a() 1(,) (= g (and a : .- I The

domain. range. and range variables of a have the following values: 9 (a) [x.k, () {a,.f(z)}, ..-- %.

~~~and .(o') = {J}

"/ ~A term. t. is said to be an instance of a term, s. it and only if there exists a substitution, a, such that -- -

t as. When the domain of a is restricted to the variables in iIs), a is unique and is called the match

of t by s. Substitutions may be composed using functional composition, i.e., for any term, 1,

(o1002) r = 01(02t). In the same sense that one term may be an instance of another, a substitution,

a1, is an instance of a substitution, a2T if and only if there exists a third substitution, T, such that a, "

7002: in this case a2 is said to be more general than a. We denote this partial ordering by a : or2.

2 2 2' -

1.3 Classical Unification

This section presents the classical unification problem and provides an example of a simple

algorithm for solving the problem. This classical algorithm will serve as a framework for our general-

ized algorithm.

Definition Given two terms, f and s, a substitution, a. unifies t and s if and only if: " .', .

at 'i ZS,

In general, there is more than one substitution that will unify two given terms. For example, if t

f(X (x),gy)) and s = f(r,:) then a = {j'+-g(x), z4-g(g(x))) is a unifier, as well as a = .- g(g(w)),

z'- g (g (g(w))), x+-g (w), and an infinite number of other substitutions. Observe in the preceding

example that a' is instance of a: a' = {x- g()o. In fact, all unifiers of t and s can be written as

some substitution composed with a, so we call u the most general unifier. The most general unifier of

two terms is analogous to the least common multiple of two natural numbers; every multiple of two

numbers is divisible by the least common multiple, just as every unifier of two terms is an instance of

the most general unifier.

Definition. The most general unifier of two terms t and s, is a unifier, a, such that V 4P

rt = qs =* (3T, rp =r ro).

In classical unification, there is at most one most general unifier up to variable renaming, A simple

recursive unification algorithm based on (Robinson 71] is given below.

10

... ... ................-..................
: ' _ _t- ' - '- -= _ _ T - " -.. ° . " ,-" . . _. '. t .= . ° t=-' L ."' ' - ' ." - - .. "- . " - - .''- - '- = - = '- -' - ' - .- J



L .'-,.':_

unify proc (: term, s: term) returns (substitution)

case

isvariable(t) and isvariable(s)

return({t-s}) .
is_variable(t)== . : ... )

it tEfls)
then failure: cycle

else return({t -s)

is variable(s) .

if sEflt) K.,-.-.--.
then failure: cycle

else return({s - t))

t.head~s.head '

failure: clash
t. head = s.head :=>

o:= £

for i - 1 tre arity(t.head) do ...
a: unify(ot/i, as/i) " ""

end

return(o)

end
end unify

Figure 1-1: A Classical Unification Algorithm *

The algorithm points out two cases in which it is not possible to unify the input terms. If, at any

point in the unification process, it is necessary to unify two terms in which the head operator symbols

are not the same, a clash occurs and the terms are not unifiable. The second case is called a cycle

and is succinctly shown by trying to unify the terms x and f(x). The unifier, {x -f(f(f(f(...))))) is -

infinite, although it can be finitely represented by a cyclic graph. In some applications, infinite unifiers

are allowed or even desired [Filgueiras 82]; in many other applications infinite unifiers would lead to

non-terminating program behavior. We will include the cyclicity test to disallow infinite unifiers, but

note that a unification algorithm can be easily modified to allow infinite unifiers by removing the

cyclicity test.

p1'7



--. .- w - . . - ° ; ' . - . ", -S..' .".% * ° . " ..

I. o . .=

1.4 Equational Unification .....

As suggested at the outset, we will use the word "unification" to stand for not the single problem

of section 1.3, but for a class of problems which differ from classical unification according to the _V

desired notion of equality. In particular, we will be using equality defined by an equational theory,

although we could also imagine using non-equational or even higher order logics. The equational

unification problems use a form of equality that is weaker than syntactic equality and are therefore

relevant to applications in which a less rigid matching process is needed.

1.4.1 Applications

Until recently, most applications made use only of classical unification, however, the need for

equational unification is clear. A number of operators that occur frequently in practice have

properties described by equational theories, and equational unification provides at least one tech.

nique for reasoning about operators with these properties. Furthermore, other common reasoning

techniques, such as resolution and term rewriting, do not handle a number of useful equational .

properties that can be handled by incorporating equational unification.

For example, the properties of associativity and commutativity, called the AC-theory, can be

described by the equational axioms:

1.x,(yz) = (xy)z

2. x .y = y ex.

The integer operations of plus and times are only two of the many examples of associative and

commutative functions about which we would like to be able to reason automatically. Despite the

prevalence of AC operators, basic term rewriting systems and resolution systems run into difficulty

handling this theory.

Another example of an interesting equational theory, less familiar to the mathdmatician, occurs in

data type specifications for sets; the insert operation is "commutative" in the sense that the order of

inserting elements into a set is not important. This property can be axiomatized by the equation:

insert(insert(5, el), e2) = insert(insert(s, e2 ), e1), which is, again, a problematical axiom for term

rewriting and resolution based systems.

The difficulty with both the AC-theory and the insert operation comes from the symmetry of the

axioms, which allows them to be used repetitively. A simple example using the crmmutative axioms in

a Prolog program will exemplify the problem. Consider the Prolog program in Figure 1-2, which

12

-- - - - - - - - -- - . .-

• ~~~~~~~~~.. . ... . . .. .... •.., ... .. .. . ..... .. , ,-.., .. ,._-.',-... ..........



. . . :.

, cor",a ns th' iser-defiried s.,'ij relation. The first three lines are input by the programmer: line one

asserts that .,e and rna'y are sL.hi.ns, line two asserts that the sibling relation is commutative, and

line three is a query, asking for the s.'b':ngs of mary. In response to the query, the Prolog interpreter

returns the value ,oe for X, since joe was asserted to be a sibhng of mary. When the interpreter is -

promoted for any other sib;.-gs of mary, the interpreter again returns oe. The program will continue ""- ..

to loop in this manner, and in general there is no way to determine that all distinct answers have been .*, --, -..;

found so that the process can stop. For similar reasons. the associative and commutative axioms in a

term rewriting system cannot be oriented into rewrite rules without losing the termination property of ,-'. .

the system.

sibling(mary, joe).

sibling(X, Y) :- sibling(Y, X).

?.sibling(mary, X).

X = joe;

X = joe:.

X = joe;

Figure 1-2: A Prolog Program with Commutativity

In both resolution and term rewriting, a solution to the problem is to build the symmetric axioms

into the system, i.e.. into the unification process, so that the axioms are not explic,:y needed. [Plotkin

72] describes the extension of resolution to resolution with equational unification and [Peterson

81, Dershowitz 83b. Jouannaud 84] describe extensions of term rewriting systems to equational term

rewriting systems. Resolution and term rewriting systems are two of the current uses of equational

unification, but applications are by no means limited to these two. A review of some ideas for using

equational unification is given in [Siekmann 84].

1 3 -.

p . ,

.. . . . . .. . . . . . . . .. . . . . . . . . ..... .. . .. ..... .. .°.



1.4.2 Equational Theories

The equational unification problem will be defined in Section 1.4.3. For that purpose, we will need

an understanding of equational theories and some related definitions. This section gives the neces-

sary formal background. There are two approaches to presenting equational theories: proof theoretic

and semantic. The proof theoretic approach, based on syntactic inference rules, is presented first

and the semantic, or algebraic approach, is presented second. The key result in the study in equa-

tional logic is the work of Birkhoff, who proved that the two characterizations of equational theories W -

are equivalent [Birkhoff 35, Gratzer 78].

An equation is a pair of terms, t = s. A congruence relation is an equivalence relation, ,., closed

under the equality rule:

ti  SO, 1 < i S n f(t . ... .tn) -f(sl ... s n) for all 'F of arity n. .!..

* Given a set of equations E, the equational theory presented by E is the set of equations E *formed by

the finest congruence over T that contains E and is closed over instantiation. We will denote this

congruence relation by t =s, meaning t =s E EO. E* is exactly the set of equations derivable from E by

a finite proof, using the following inference rules given by Birkhoff:

1. Retlexity: x =x is alway an axiom.

2. Symmetry: From t =s deduce s =t.
E E

3. Transitivity: From t =r and r =s deduce t =s. ,, . -
E E E

4. Equality: From t, =si, 1 <S I n deducef(t1 ..... I t f (sl ... Is)f of arity n. -

5. Instantiation: From I =s deduce ot =as.
E E

We will consistently use E and E*, respectively, as a set of axioms and the equational theory

presented by those axioms. Note that E" is uniquely defined from E, but there may be more than one

presentation, E, given a theory EO. Even if E is an irredundant presentation it may not be unique; for

example, group theory has a number of distinct irredundant presentations. This fact will, in some

cases, force us to fix the presentations of theories so that proof theoretical arguments can be based•-

on a well-defined set of axioms.

The following discussion of algebras is needed for giving the semantics of equational theories. An -.

algebra, A, is a pair (A, P), where A is a set of elements called the carrier of . and each f E I is a

function from An to A for some arity, n. A mapping, P, from V to .A, (i.e., to the carrier of -. ) extended

as a homomorphism from T to A, is called an A.assignment. It is important in this discussion to -'.

distinguish between the semantic and syntactic objects. For example, if A is the set of integers and P

14

14 * .. .... ... *'-



.:'-'-4:

a set of integer operations, then addition is a function in " and the number "one" is an element of A,

whereas "+ "and "1" are syntactic objects for which we may choose any interpretation. r

One of the simplest models that exists for any equational theory is the term algebra, T The term

algebra has as its carrier the set of terms, T = T(F, V), and as its set of functions a set of term . '-

constructors, P, one for each function symbol in F. For example, if f is a unary operator in F, then

*there exists a corresponding unary func'on, I in t, such that I maps any term, t, in T to the term f(t).

Because the carrier of Tis exactly the set of terms, the identity map is one example of a T-assignment. A-..*. 4

If ,t = ,s for all .- assignments, ,, then .A. is called a model of the equation t = s, and t = s is said

to be valid in .. ; we denote this condition by .A 1= t = s. Validity can be extended to a set If

equations by: . I-= E if and only if (t = s) E E = A 1==(t = s). Given a set of equations, E, we denote .

the class of all models of E by JA1t(E) and the set of equations valid in a class of models, fI , by Eq M.
Given a set of axioms, E, we can semantically define an equational theory as the set of equations valid

in all models of E. To reiterate the equivalence between the algebraic and proof theoretic charac-

terizations of equational theories, note that the soundness and completeness of the above inference

rules, as proved by Birkhoff, can be written E = Eq A(E).

J
If there exists a non-trivial model of E, i.e., A= (A, F), and . 1=E and IAI > 1, then the theory

presented by E is said to be strictly consistent. Syntactically, an equational theory has only the trivial

model if and only if x = y, since any equation is a substitution instance of this one. The unification

problem in an inconsistent theory is always trivial. By assumption, we will work with only strictly

consistent equational theories.

The equivalence relation on terms defined by an equational theory can be extended to an equiv-

alence relation on substitutions: a, = a if and only if V v E V (a v = a v). In many cases we are

interested only in the effect of a substitution on a particular set of variables, V. We extend our defini-

tion as follows: 01 E o 2 if and only if V v EV V =a 2 v. Furthermore, we say that a, is more general
E E

than 2 modulo E over V, written a 02, if and only if:

vThere exists r such thatro =

The equivalence relation defined by o o 2 and 02X 01 will be denoted a=02 or, if V V, by aE0 .

The relation = corresponds to our intuitive notion of equivalent modulo E up to variable renaming,
V E

and corresponds to same relation where only the domain of V is considered.

The following properties hold for the equivalence relation on substitutions. They will be used

freely in the proof of correctness in Chapter 3 and are presented here to avoid distraction during

those proofs and to aid the reader in developing intuition about = on substitutions. '
E

15

...................... *. .- .°. * .* ,°
. .. . .. . . , . ° - '.. . - ° -. . , - , - = . °o. . -,, - . . - ° ° o , * . . , , -o* . ,.%.. .. .- . .. -- , . , ..,,, ,, .. . / , ,*, ,* ? ,.



1. 02 a 30 a v3, 2 frayllinslantiation
SE E

2. (.o)0o1 Y 010(02003 associativity . ~

3. Crv=1 restriction

E. =9E S: *CI"OnTO..O' equality for composition

5. 60a 2= a 20 O,. if m2al)fj(02) = 0) &li.mited commut ativity

*1 (~~~~1oMa)flj(a)= 0) & 0(rE(Oa)flnoj ~ av

Having presented the basic concepts involved in working with equational theories, we are now

ready to examine the unification problem in these theories.

* 1.4.3 A Problem Statement

Equational unification is the problem of solving an equation of the form t s in the quotient

algebra. 9/ =. whose carrier is the set of congruence classes of terms defined by E. If E* is the empty
E

theory. then we again have the classical unification problem. The problem is distinguished from the

problem of savhaiat in a first order theory. In unification the interpretation of symbols is fixed as

the term algebra interpretation, whereas determining satisfiability of a first order statement is the

* problem of finding w.hether there exists any interpretation in which the statement is valid.

Definition. Let t and s be terms and E be a set of equations. A substitution a. is said to be an .-

E-unidier offt and s if and only if:
otf as.

E

1.4.3.1 Properties of Unification Algorithms

Let Ui denote the set of all E-unifiers of terms t and s, i.e., UE(t, s) =(a E S oft a s) and letE E
V = ilt)U tls). As in classical unification, U E is infinite; we represent it by a complete set of unifiers

*from which set the U can exactly begenerated by considering all instances of each substitution in

* the set. ft every element of a set of unifiers is necessary for completeness, it is called a minimal

complete set of unifiers. The following set of definitions formalize these concepts.

* ~Definition. Let 1: be a set of unif iers of t and s and V = l)Uils). I is said to be comc't i n

* ~only if it generates all unifiers: .-

V aE U,(t, s) 3 c'E 10 a1 ~a

Definition. Let 1: be a set of unifiers of t and s and V = 
4Yt)Ujs). 7. is minimal if and only if no

substitution in Y is redundant:



, * , - -~ - ,~2-.-.. -%

a a .
E N'

When it exists, a minimal complete set of unifiers is unique up to for any E* [Fages 84]. The sizeE k

of the minimal complete set is bounded for certain values of E. If E = 0, there is always a singleton '

complete set for any two unifiable terms. If E contains only the associative and commutative axioms
(the AC theory) then the complete set is always finite. If E contains only the associative axiom, then

there are some pairs of terms for which every complete set of unifiers is infinite. If there is a finite

complete set then a minimal complete set always exists and can be found by filtering out non-minimal

unifiers through matching. For some infinite cases, the properties of minimality and completeness

may conflict, so that no minimal and complete set exists [Fages 83a]. -

For completeness, it may be necessary for an E-unification algorithm to use more variables in the

range of the unifiers than occur in the terms being unified. Because unification procedures are often

used within a larger system containing variables of its own, it is useful to require an additional

property to protect the existing variables from being used as new variables. ,-.

Definition. Let Y. be a set of unifiers of t and s, V = flt)UY'(s), and let W be some set of variables to

be protected, where VCW. 2 is protective if and only if:

VaE q()CV & w-vli(a) = 0
&9(anfi(a) o .

Without loss of generality, we will assume sets of unifiers are protective, both for the pragmatic

reason given above and for the technical reason that it makes unifiers idempotent, (i.e.,

nJ()fl.(o) = 0 o ace = o) which will be used in the proofs.

The properties on sets of substitutions are extended to properties on a unification procedure;

collectively, they constitute partial correctness of a procedure.

Definition. A procedure, E-unify is a partially correct unification procedure for E if and only if for all

terms t and s and any finite set of variables WD'Vt)UTs), if E-unify terminates with a set of substitu-

tions X, then:

1. consistency: aE7, =t =as.

2. completeness: I is complete for t and s.

3. protection: X is protective of t, s, and W.

If, in addition to being partially correct, E-unify returns only minimal sets of unifiers, then it is said

to be a minimal procedure. A procedure which is partially correct and terminating is called totally

17



correct and is referred to as an algorithm rather than a procedure. Any theory with a terminating

unification algorithm has a minimal complete set of unifiers for any pair of terms. However, minimality

of the algorithms is not included in the correctness criteria because it is a difficult to guarantee

without the costly filtering process, and because it is not necessary in most applications of E- -i

unification.

1.4.3.2 Classifying Solutions to the Unification Problem

Historically, there are a number of ways in which one can solve the unification problem for a

particular theory, E*. We will classify each kind of solution because it will help to clarify the contribu-

tions of our approach and the assumptions behind it. The terminology used here is not well-defined

in the literature, but we establish a convention based on common usage for referring to each kind of

solution after giving its characterization.

1. For a given equational theory, E*, the simplest unification problem is called the

variable-only case. The assumption is that there is one set of axioms, E, and terms to be

unified contain only function symbols appearing in E and variables.

2. Unification in the case with tree symbols is, again, unification with a single set of axioms,

E, but the terms may contain free function symbols, i.e., unconstrained symbols of any . ."- '

arity, in addition to function symbols in E and variables.

3. The multiple instance case unification problem allows more than one instance of a set of

axioms, for example, the AC theory for + and the AC theory for s. In this case terms still

contain only function symbols from the axioms and variables, but a single term may

contain more than one operator with the given properties, i.e., both + and,.

4. The unification problem for combined theories is to take sets of unrelated axioms, for

example, the AC theory for + and the "commutativity of insert" theory for sets, and allow

unification of terms containing function symbols from both of these theories:

It is this last problem, the problem of combining equational unification algorithms, which is studied

and partially solved here. This thesis provides an algorithm for combining equational unification

algorithms for a restricted class of equational theories and characterizes some of the theories for

which the combined problem is not solved. This problem was suggested as an open problem in

[Siekmann 84] and [Shostak 84].

18

.I . .°- , . o , . . . . , . o . ° . . . .. .

, './. " '. " .."-. -° "-, -" " *-. -. . .", .. . . "..- %., - U .-. - . <.."". - :i° "o'. , .. , -' .. . ...... o... " ,. " ,



1.5 Related Work

This sction d:scusses some of the work that has be done on developing unification algorithms.

Section 1.5.1 give a short survey of algorithms that have been designed to solve the unification

problem in one particular theory Section 1.5.2 describes a class of unification procedures that can

be automatically generated from an axiomahization of the theory, and Section 1.5.3 looks at some

work related to the general problem of designing algorithms for combinations of theories.

1.5.1 Single Theory Algorithms

A number of unification algorithms have been developed for particular equational theories, and a

great deal of effort has been devoted to improving and bounding the running time of these algorithms.

It is interesting to note that theoretical measures of complexity for these algorithms often do not

reflect their relative running times in practice. This is probably because of the small size of terms in . " .-.-

the average case. although little work has been done in trying to formally characterize the average

case for a unification problem or in measuring the performance of algorithms based on an average liA_,

case.

For the empty theory, the first algorithm was described in [Robinson 711 and is exponential in the

size of the input. It has been modified by representing terms as directed acyclic graphs rather than

trees [Corbin 831 to give an n' algorithm. The algorithm of [Paterson 78] runs in linear time and those

of [Martelli 82] and [Baxter 731 run in nearly linear time. [Martelli 82], while theoretically slower than

the linear algorithms, runs faster on some typical examples. Also, the modified algorithm of [Corbin

831 is fast in practice and has the additional advantage that the structure of the algorithm is simple

and intuitive; one disadvantage of the [Corbin 831 approach is that it depends heavily on a data

structure for terms that may or may not be appropriate within an application.

Some of the currently known complete E-unification algorithms are for commutative operators

[Siekmann 79), AC operators [Stickel 81, Livesey 76} (with termination in the multiple instance case

proved in [Fages 84]), signed trees [Kirchner 81], one.sided distributivity [Arnborg 85], and transitivity

[Kirchner 85]. There are variations on the AC algorithm [Livesey 76, Fages 84) for AC with idem-

potence, and AC with a unit element, AC with both idempotence and a unit, An algorithm for the V

variable.only case of free abelian groups is given in [Lankford 84], and more generally for finitely

presented abelian groups in [Kandri-Rody 85]. [Kandri-Rody 85] also gives unification algorithms for

finitely presented boolean rings and finitely presented boolean rings of polynomials (i.e., with

idempotence).

19. 4



The decision problem for unification in the associative theory, also known as strng unification,

has been shown decidable [Makanin 771. The associative theogj has, in general. an infinite set of

most general unifiers, so a terminating algorithm cannot exist. However, a complete procedure for

)numerating unifiers of an associative operator is described in [Plotkin 72]. This procedure is given 0

for one associative operator with unconstrained symbols of any arity. Not all equational theories have

decidable unification problems. [Szabo 78] shows that unification in the associative distributive theory

is undecidable and [Arnborg 85] shows that combining associativity with one-sided distributivity and a -'-"-

unit element gives a theory with an undecidable unification problem.

For theories in which a unification algorithm is known, the execution times of many have been

disappointingly high. These observations are explained by some recent results classifying the com- ,.. .

plexity of different unification problems. The unification problem in the commutative theory is known

to be NP-complete [Garey 79], and in the AC theory to be NP.hard [Kapur 85, Chandra 84]. Unifica-

tion in the theory of right and left identity is NP-hard while the theory of one-sided distributivity can be

done in polynomial time [Arnborg 85]. A restricted case of unification is the matching problem, in

which a substitution is applied to one term to make it equal to another. [Benanav 85] shows that even

this simpler problem has an NP.complete decision problem in both the AC and commutative theories.

Much of this past work in equational unification has made use of simplifying assumptions on the

structure of terms, i.e., algorithms are usually developed to handle terms whose operators all belong

to a single set of axioms. In most cases, the above unification algorithms were designed for the

variable-only case, possibly with constants. Contrary to many claims, we show in Section 2.4 that . ..--

extensions to the case with free symbols is often non-trivial.

Under the current approach, every time a new axiom is added to the theory, a new unification "

algorithm must be found and implemented for the new set of axioms. The work of [Fages 83b, Fages

84] takes steps toward remedying this situation by extending the unification algorithm for AC to

handle terms containing a mix of theories including empty, commutative, and AC theories. However, .

his approach is still ad hoc rather than generalized. Adding another theory to his algorithm, for

example the theory of left distributivity, would require modification of his algorithm. The modified

algorithm would have to consider terms containing all the possible combinations of operators. In

contrast, this thesis describes a method for automatically combining theories. 7

Figure 1-4 summarizes some previous results on developing equational unification algorithms,

with careful attention paid to whether an algorithm is a solution to the variable-only case, the case

with free symbols, or the multiple instance case. Algorithms that permit constants as well as variables

20
S' , .o .•.



are recorded in the variable-only case column: the constants are added in some theories to keep the

decision problem from becoming trivial; they play an uninteresting role in the problem of generating a

complete set of unifiers, except to eliminate those unifiers that equate two constants. Algorithms from

[Hullot 80] and [Jouannaud 83] are based on narrowing, a process for unification described in the - -

following section. .. .

21

. . . ,... . . . . . . . . . .

. . . -. . o.

.. ft~ * ~ *... *, a. a•



At:,breviatbon Axioms Theory
0 no axioms empty theory

A X+ (.% + : (x+)+ associative

o '+Y =y + X commutative

I %+ X =A idempotent

D *(I + .1 ~ + (V z left distributive -
Dr (V + I )'.v (.k +yv).: right distributive -

o D and D distributive

V +0=0+.v V right and left identity

H I: (4* h(.x) + hb (v) homomorphism

M -(x xminus

SBT signed binary trees

+( +jz r
transitivity

Cr f(f(x, J.). Z) =f*(f(x, 4).0 right commutativity,
e.g., insert on sets

01 A~Xf, Z))=f(y" AfX, Z)) lefttcommutativity

OG X .(X\') =Y quasi group
(Xl))) X
X \(X Y)=

AG X Oi(x) e abelian group
x *e = x
is AC

FPAG AG axioms with finite finitely presented abe/ian group
set of linear polynomials

FPBR + is * of an AG, finitely presented boolean ring
*is ACI with U and a

firite set of boolean polynomials -

Figure 1-3: Some Common Equational Theories

22



-T W77

TerVariable-Only Fre Symbols Multirle Instance

0 [Robinson 71] and others

A [Plotkin 72] [Plotkin 72) open
procedure to enumerate unifiers

C [Siekmann 79] [Fages 83b] [Fages 83b)
AC [St ickel 81] [Fages 83b] [Fages 83b]

I[Raulefs 78] [Hullot 80] [Hullot 801
[Hullot 80]

CI [Raulefs 78] [Jouannaud 83] [Jouannaud 83]
[Jouannaud 83]

Al decidable [Szabo 78] open open

ACI [Livesey 76] [Jouannaud 83] [Jouannaud 83]
ACU [Livesey 76] [Jouannaud 831 [Jouannaud 83]

D, (or Dr [Arnborg 85] open open

D open open open

U [Arnborg 85] [Hullot 80] [Hullot 801
[Hu (lot 80]

DA undecidable [Szabo 78]

D 1AU (or DrAU) undecidable [Arnborg 851
*H [Vogel 78] this work this work

[Kirchner 85] [Kirchner 85]
*Minus [Kirchner 84a] open open

ABS [Kirchner 81]

T [Kirchner 85] this work this work
[Kirchner 85] [Kirchner 85]

TC [Kirchner 851 this work this work
[Kirchner 85] [Kirchner 85]

TOC [Kirchner 85] this work this work
[Kirchner 85] [Kirchner 85] -

Cr (or C,) [Jean rond 801 this work this work
[Kirchner 85] [Kirchner 85]

OG [Hullot 80] [Hullot 80] [Hullot 80]

AG [Lankford 84] open open

FPAG [Kandri-Rody 85] open open

BR [Kandri-Rody 85] open open

Figure 1-4: Known Unification Algorithms

23 .-.-



1.5.2 Narrowing

While most of the existing unification work in unification has required human invention of each

algorithm, the unification procedures based on narrowing [Slagle 74] are automatically generated.

For equational theories representable by a convergent term rewriting system there is method for

-. performing unification in the theory of the rewriting system [Fay 79]. [Hullot 80] gives sufficient con-

ditions for termination of the narrowing process, along with some improvements, and [Jouannaud 83]

generalizes this work to equational term rewriting systems. [Rety 85) further improves on the ef-

ficiency of the narrowing process and detects cycles in the unifiers.

The approach described in this thesis serves a quite different purpose than the work on unifica-
tion through narrowing; the narrowing procedure does not assume the existence of equational

Ir..
unification algorithms, but generates a procedure based on its axioms, whereas our approach might e. -

use a unification algorithm produced by narrowing as one of the basic pieces to be combined. For -

example, the work in narrowing has lead to unification algorithms for theories described by a conver-

gent term rewriting system in which all right-hand sides are either a single variable or ground term. '° - "

These theories include idempotence, identity, and quasi-groups. The algorithm described in this

thesis applies to narrowing algorithms for theories in which right and left sides of all axioms are- -

ground terms, e.g., 1 1 0. In other words, given a theory presented by ground equations, we can

automatically generate a unification algorithm through narrowing; this algorithm can be combined - .

using our approach with other unification algorithms.

The narrowing process is interesting from a theoretical standpoint, and gives quick positive

answers to the question of existence of an E-unification algorithm for theories presented by ground

equations or unconfined equations. For the cases in which narrowing gives a unification algorithm, it -\ .

will also solve the problem with free symbols or multiple instances, but can solve the combining

problem for only very limited combinations of theories. Moreover, even when the process terminates,

it is too inefficient to be practical as part of a larger system such as a term rewriting completion

procedure or resolution system.

1.5.3 Combining Theories

Although the problem of combining unification algorithms is a known open problem [Shostak

84, Siekmann 841, the problem of combining decision procedures for first order theories has been

studied. Nelson and Oppen provide a procedure for deciding whether a formula is a theorem in " "

combination of first order predicate calculus theories [Nelson 79]. Their algorithm uses a set of

" decision procedures for the theories being combined, much in the same way we will use unification -

24

~~~. . . . . . . .. . . . . . .. . . .. . .. . . ,. • .o, .• • -

----... _. . - _- - _ ' .,- _ , . , ,. , • - . - . .. -• , ,,. ' , , ." . , , . '

algorihms for tme theories being combined [Shostak 84] improves on the algorithm of [Nelson 79] by

localzing the information shared between algorithms. This yields an improvement in the algorithm's

efficiency and extendibility.

The similarity between the structure of our unification algorithm and the decision procedure of

[Nelson 79] is apparent when unification is considered in the Martelli and Montanari style of

propagating equalities [Martelli 82]. [Kirchner 84a] gives an algorithm based on this style for unifica-

tion in the decomposable theories. a class of theories in which a natural decomposition process ,

occurs during unification. For example, if / is a symbol that does not appear at the head of either

side of any equations in E, then the problem of E-unifying terms of the form f(s, ... Is and f(t I,...,--

modulo E, is proved equivalent to unifying all pairs si, ti, 1 < i <n.

[Kirchner 85] has independently developed an algorithm for combining unification algorithms. He

generalizes his earlier work by defining the notion of a decomposition process for theories in which

the natural decomposition does not occur. For example, in the the commutative and AC theories

there is a finite set of possible decompositions related to the set of possible unifiers.

The algorithm of [Kirchner 85] is based on two main phases: simplification of the unificands, and

formation of substitutions. His algorithm is correct for a slightly smaller class of theories than the

algorithm we will be defining. In particular. if a theory contains a ground equation in an irredundant

"resentation, then Kirchner's approach does not work. We will discuss the exact details of his

restrictions on equational theories in Section 2.1.3.3 after our own restrictions are presented.

[Kirchner 85] reports that his implementation works faster than ours on some typical examples using

the AC theory. This may be because of earlier discovery of clashes using his approach, since he

detects all clashes during the simplification phase before beginning the more expensive phase which

involves cyclicity testing.

-I__

25

.

- ,-* r,. -- -°:-o-- °,

Chapter Two

A Generalized Unification Algorithm

This chapter presents our approach to generalized unification. The presentation is bottom-up. In

Section 2.1 we state some assumptions on the equational theories, Section 2.2 presents a description -

of the algorithm, and Section 2.3 gives a detailed example.

2.1 A Generalized Approach

In equational unification, a unification algorithm must be discovered and implemented for each

equational theory of interest, and with some notable exceptions, (see Section 1.5) this process is not

automatic. As we will see, the problem of combining algorithms is also non-trivial. Our approach is to

break a combined unification problem into pieces that we know how to solve with the sub-theory

algorithms, and then to combine the answers for each these sub-problems to get a solution to the -.-.-.-

whole problem.

Our algorithm is recursive; a top-level procedure performs the steps in unification that are com-

mon to all equational theories and then invokes an appropriate equational unification algorithms for

sub-problems particular to one theory.

2.1.1 Partitioning Equational Theories

Our first underlying assumption is that the sets of operators handled by each unification proce-

dure are disjoint. Consider the following example: we are given a unification algorithm for AC-

unification and an algorithm for unification with an idempotent constant (IK-unification). If the +

operator is known to be AC and have an idempotent constant, a, (i.e., a + a = a), our technique will

S-not automatically generate an algorithm for AC-IK-unification because the AC and IK axioms interact

through the shared symbol +. On the other hand, if + were AC and * were IK with a, and there were .O

no other axioms in E, our approach would generate an algorithm for this theory.

We will treat each unification algorithm for an equational theory as a "black-box," invoking it with .-- '

certain inputs, but never examining the operation within the box. The above problem with + being

both AC and 1K can be eliminated by considering only sets of axioms with disjoint operator sets. ... '.-.

Forrnally we define a partitioning on the axioms presenting E.

26

Definition Let '7 = {E 21 E. E, where each E is a set of equations. w is a partitioned

Srep.t'fru t;,n of an equational theory E" if and only if:

1 J(E,-I' -J(E) = 0, V i1 S- n

2. E is a presentation of E, and

3.0Cif.
*-- Lii .

, Each of the E's presents a theory, E., called a sub-theory of E*. The empty set of equations in (3)

.. represents the empty equational theory, which is a sub-theory of any theory. Semantically, the union

of a set of equational theories corresponds to taking the intersection of their models, & (E) =

,A(E1).

The partition, v, naturally defines an equivalence relation on function symbols. Letf 1 -f2 if and

only if either:

1. There exists E, E ir such thatf 1 E (E) and f 2 E I5(E,).

." 2. Or, for all E, ,.f1 '.f(E,)andf' (cJ(E).

- The equivalence class of symbols containing f will be denoted [f, e.g.. if one of the sub-theories is

* ACZ with + as the AC operator and 0 as the identity constant, then [+1 = +, 0}. Function symbols

that do not appear in any of the E's are called uninterpreted and all belong to one equivalence class.

This equivalence relation will provide a convenient way of naming unification algorithms of sub-

theories. It is not quite correct to refer to an operator as being 'in' a particular sub-theory, since each

sub.theory has the same fixed signature, F. We therefore fix the partitioned presentation 7r for E* and

refer to the set of function symbols appearing in E, as the constrained function symbols for E'. For

technical reasons, we will let the set of uninterpreted symbols be the constraned symbols for the

empty theory. The unification algorithm for the theory constraining F will be denoted EF.unify or

Enl-unify, ifJ EF.

- An example should help clarify our definitions. Let E* be presented by the axioms in Figure

2-1 and let the signature, F, be the set {+,a, b, .,,g) with appropriate arities. it = {E1, E2, E3,

. E4) is a partitioned presentation of E. 7ir is said to be a minimal partition because none of the elements .

of 7r can be divided further without losing the disjointness property on function symbols. In general

* we will use minimal partitions because this results in the simplest sub-theories, although minimality of -- . -

- partitions is not required.

There is a final technicality to clarify before beginning the discussion of our algorithm. Although

27

....... ,,..........* . . ,: ,;
.... ...-- - -. -. ...*.,.-.. *. .-. ~ .. *-. : : :

= {El, E2, E3, E4) Classes of F: (F1 , F2, F3 , F4)

(x + y) +z =x +WX + x)
E :X +' =2 +Ox F2 = 9(E11 ={}. .

E2:x•.=.•x F2 = J(E2)={.,,.

(x • y) • z = x • (y * z)

E3 :xy =y x F3 = 5 1E3 = 1 .)

E4: 0 F4 = (b, f, g)

Figure 2-1 : A Partitioned Presentation

we speak of an E-unification algorithm for a particular equational theory, each algorithm is really for

an isomorphism class of equational theories. For example, if both + and * are AC, as in Figure 2-1,

we can use the same algorithm for unifying a pair of terms containing + or a pair of terms containing

• . The two equational theories, + AC and * AC, are not equal theories, but the isomorphism is so

natural that we would normally consider them to be the same. A difficulty arises when the two

theories are combined, i.e., when terms to be unified contain more than one operator with the same

equational properties. To resolve this issue, each E-unification algorithm is parameterized over the

set of names of its constrained operators. In this example, AC-unification for + and AC-unification

for * are both instances of the same E-unification algorithm. For the purpose of this discussion, we

will assume a different unification procedure exists for each instance of a theory, although in the

implementation we do not duplicate the actual code.

2.1.2 Some Basic Functions

Our algorithm begins by transforming the input terms into simpler terms containing only operators

from a subset of the axioms, a subset for which there is a known E-unification algorithm. The

information lost in the transformation is saved in the form of a substitution. This substitution is

*. combined, through E-unification of substitutions, with each sub-theory unifier of the transformed

terms. Section 2.1.2.1 describes this transformation process on terms and section 2.1.2.2 describes a t'-.
- procedure for unifying substitutions.

21

'2. .'...,,...,.., . , . :,,-.-. -.-...................

*° * ° ''

2.1.2.1 Homogeneous Terms

A term, t, is called homogeneous with respect to a set of function symbols, F, if and only if

IJ(t) C F. We define a homogenizing function, Homog, to convert an inhomogeneous term (i.e., a term

containing operators that are not in F) into a homogeneous term. The basic operation of Homog is to

replace all maximal subterms whose top function symbol is outside F with a new variable.

Definition. Let F be a set of function symbols and t be a term, then Homog(t, F) is defined as:

1. If t is a variable, then Homog(t, F) = t. .*,.

2. If t= f(tI tn) and f E F, then Homog(t, F) = f (Homog(t1 , F),...,Homog(t n , F)).

3. If = f (tI...,tn) and f F, then Homog(t, F) = v, where v is a new variable.

As defined, Homog(t, F) is not a function but is unique for t up to names of the new variables.

Technically, we should be more precise about the new variables that are used, for example, in case

(2) we assume any new variables in Homog(t,) are disjoint from both the old variables in ti and new,,- .."'

ones in Homog(t), for i j. To assure our algorithm is protective, these new variables must also be

disjoint from the set of protected variables. We formalize the naming of new variables in Appendix A.

Taking F = {a , we have the following values for Homog:

Homog(x -(a +y), F) x xv
Homog(x -(a *b), F) = x (a v2)
Homog(x +y, F) = v3.

In general, homogenization of a term is done with respect to some equivalence class of F as defined

by ir, usually the equivalence class of the root symbol. We use the notation 1" to denote

Homog(t,[t.head]).

In forming a homogeneous term, part of the structure of the original term is lost. To take a

homogeneous term back to the term from which it was formed, we find a preserving substitution.

Notice that t is an instance of F and we can therefore find the match of t for F, in this case called a

preserving substitution, by Preserve(t, t). Preserve(t, f) maps each new variable in t to the term it

replaced in t. We distinguish the preserving substitutions from normal matching because the prevers-

ing substitution is unique for t within variable names in its domain.

Definition. Let t be a term and t be its homogenous form. The preserving substitution for t and t is a

substitution y such that:-
J(ylC'~t) & yf= t•.'":'&

29

2.1.2 2 Unification of Substitutions

This section describes our method for combining sub-problem unifiers, which involves unification

of substitutions.

Definition Given a set of equations. E, a substitution, a, is said to E-unify two substitutions, q), and

92 if and only if:

We need an effective procedure, call it map.unify, for finding unifiers of two substitutions, q), and

In looking for a unifier of two substitutions, as in testing for equality of substitutions, we restrict

ourselves to the domain of the variables V = 9(9,1)Uf(2). A corresponding pair of terms is defined

tobeapair,Vt1 , t2> where tl = T andt 2 =iT2 for some v E V. If we can unify each corresponding

pair of terms in substitutions sequentially. accumulating the unifiers. and applying the results to

remaining pairs, the end result will be a set of unifiers of the substitutions. The routine in Figure

2-2 performs the desired function. map-unify assumes the existence of our main algorithm, CR-unify,

because the two procedures, map-unify and CR-unify. are mutually recursive. (For technical reasons

that will be made clear in the termination proof, the variables in "(T2 are unified after the variables in

map-unify = proc (' 1')i2 :subst) returns(Q:subst-set)

V g:= (T 1) -1r21v 2 : 9 4 72) : : :: : :: :

i:= 0
forj = 1 to2do

for v in V. do
i:= i+ 1 - -"".

i:= j{(e0°' 1 EiX. Yi1 & jiECR-unify(ai.1rpjv, oi 1ip2 v))

end

return(Ij)

end map-unify

Figure 2-2: Procedure map-unify for Unification of Substitutions

30j

.-.-- .-:....,:

,, , ... ,- :-" .. ." - ..., , ..,

2.1.3 Restrictions -:

The CR-unify procedure presented in this thesis is correct for only a restricted class of equational

theories. Two syntactic restrictions on the axioms in ir, confinement and regularity, are sufficient to

show correctness.

2.1.3.1 Confined Theories

The first restriction will be to eliminate those equational theories in which two E-equal terms have

head symbols that are constrained by different sub-theories. Because we assume the axiom sets are

disjoint, this case can occur only if there is a equation in the theory of the form t s, where either t or

s is a variable and the other term is a non-variable. If this kind of equation is in one sub-theory, then

there will also be instances of this equation in the entire theory, where the heads are not equivalent

modulo w. Equations of this form, between a variable and a non-variable, will be referred to as

non-confining, because they provide a means of deducing equations whose roots are not confined to

the same equivalence class of F. A set of equations containing no non-confining equations is called

confined; this terminology also applies to theories since they are closed sets of equations.

An example of an unconfined theory is the theory of idempotence. Let E be the theory presented

by ? = {x - x = x), 0), and letf be a function symbol in F. The equationf(x) .f(x) =f(x) is in E,
E

even though * and f are in different equivalence classes. The problem caused by having roots in

different equivalence classes will be apparent in the description of CR-unify, where we begin the

unification process by unifying in the sub-theory of the roots. Lemma 1 will state that this restriction

can be made on the axioms, rather than the theory, and Theorem I will give the desired property on
head symbols of equations. We postpone the presentation of these proofs until Chapter 3.

2.1.3.2 Regular Theories

The second restriction is on the sets of variables in equations of the theory. The problem comes

from variables that occur on one side of the equation, but not on the other. An equation, t = s, is

regular if and only it *It) = tfs). We extend this to sets of equations by: E is regular if and only if all

equations in E are regular. As in the case of confined theories, we can restrict ourselves to reqular
theories by restricting the set of axioms. Lemma 3 states the equivalence of these two properties and _ .

Theorem II gives sufficient conditions under which a variable and a term containing that variable are

not unifiable.

We have eliminated some interesting theories, such as idempotence, identity and minus, however,

there are still many interesting theories that are both confined and regular. The distributive theory,

31-. .
31,..,,"" .-

- .--.- ,- - --

-7.o o•• 17S

. the homomorphism theory, and any theories presented by ground equations are confined and

regular. In addition, any theory in which the right side of each equation is identical to the left side

within a permutation of variables, i.e., a permutative theory, is confined and regular.

, Recall from Section 1.4.1 that one of our reasons for studying E-unification was to avoid termina-

tion problems in systems that use equations as oriented rules. A permutative equations oriented in

such a manner will always a program to loop, since they can be applied repeatedly. An unconfined

equation, if oriented into a rule, will not lead to termination problems since the variable side of the

equation is simpler than the non-variable side. Consequently, the equations that most often lead to

termination problems in an application can be handled by our unification algorithm, whereas equa-

tions that cannot be handled by our unification algorithm will often not cause termination problems in

an application.

2.1.3.3 Strict and Strongly Complete Theories

In this section we digress in order to give a careful distinction between ou, estriction to confined

regular theories and the restrictions of [Kirchner 85). As discussed in Section 1.5.3, Kirchner's algo-

- rithm is based on two main phases: simplification of unificands and formation of substitutions. His

algorithm for simplification is correct and terminating for the confined theories (he calls them

non-potent theories.) The simplification algorithm produces a simplified system of unificands and is

complete in a sense defined in that work.

The second phase, formation of substitutions, involves forming substitutions from simple pairs of

unificands, e.g., one variable and one non-variable. In general, discovery of all unifiers may require '"-

another phase of simplification after some substitutions have been formed, and this makes it difficult

to guarantee termination. To avoid having to alternate between simplification and substitution for-

mation, Kirchner places further restrictions on the equational theories so that a single phase of

simplification followed by a single phase of substitution formation gives a complete set of unifiers.

The correctness of his unification algorithm depends on the theories being strongly complete and .- -

strict as well as confined.

Definition. A theory E" is said to be strongly complete if and only if for all variables, x, and terms, t, A

there exists ., a complete set of unifiers of x and t such that:

VaE,() = x).

As an example of a theory that is not strongly complete, consider the theory presented by a + b a. t6

This theory is not strongly complete because the terms x + y and x are unifiable by the substitution

32

{ -,-',}, but not by any substitution having only . in its domain. All theories presented by ground

equations that have at least one operator of arity two or higher in the presentation, will fail the strong

completeness test.

The notion of strictness of an equational theory depends on the following ordering on pairs of

terms.

Definition. I, s>-.<<t', s'> if and only if:

1. t is variable, t' is not a variable & tEI't'), or

2. 1 is variable, s' is not a variable & tEfls'), or

3. 1 or 2 is true with s for t.

Consider a set of unificands, i.e.. pairs of terms to be unified, for which we want to find a single

substitution that unifies all pairs in the set. If such a unifier exists, then we take the transitive closure

of on the set and determine whether or not the transitive closure is strict. (A strict partial order is

one which is irreflexive and asymmetric.) A theory is strict only if the transitive closure of -<JG,

denoted -< . is strict. More precisely:

Definition. A theory E" is strict if and only if for all sets of pairs of terms, P:

3a such that (V<t, s)CP, of =os)
The -.< is strict on P. E - -

The simplest examples of theories that are not strict are those in which a variable is unifiable with a

term containing that variable. For example, in the theory presented by g (Q (.k g (CI.) and y. are

unifiable, but <g(x), x> is less than itself by -<%, so -< is not strict on P= {<g(), . >. Any theory

with an equation in which one side is a subterm of the other will be non-strict.

Kirchner's restrictions on the equational theories are less general than ours because both al-

gorithms require confinement and because strictness implies regularity. For evidence of the latter, we

construct a pair of unifiable terms that cause a trivial cycle in the -<% ordering in any non-regular

theory. Given any non-regular equation in E', it will be of the form t=s, where 31', ,,Et & vis. The
E

pair of terms v and t are unifiable in E* by the substitution {f,-s), but -<%" is not strict on [<v, t>).

since v Et,

Note that the restrictions of strong completeness and strictness are conditions on the infinite set

of equations in the theory, whereas our restrictions are syntactic checks on any presentation of the

theory. Moreover, strictness implies regularity but not the reverse, so his algorithm is slightly less

general than ours. Examples of theories handled by our algorithm but not by Kirchner's include most

theories presented by ground equations, e.g., a + b = a, and the confined regular theories containing

equations with one side a subterm of the other, e.g., g (g (x)) = g(x).

33

...

~~~~. . .. . . . ." ". . .. - " " " " - - -i .i' ' ', - " " " " " . ." " " "" "



. 7-7 w
-  " -

.

2.2 The Algorithm
. - ..'% *

The mu'n algorthm. an a!gorithm for generalized equational unification of terms. is presented

I below. Tr.e basic assumptions are summarized here. El is a strictly consistent equational theory,
with a fied partitioned presentation. 7 = {El ..... En) For each E*, there is a known unification "L-

. algorithm, called E,-unfy. which returns a complete set of unifiers. given any two terms that are

homogeneous in the constrained symbols of E,° . We also assume that E is confined and regular,

although the reason for these last two requirements will not become apparent until the proof of _-,

correctness in Chapter 3.

The CRunf,y procedure is .ven in Figure 2-3. If t and s are variables or if I is a variable not

occurring in s then the terms are unifiable by the substitution {t'-s}. If t and s are both non-variables

with root symbols from difterent equivalence classes of F. then any substitution instance of t and s will

also have root symbols with this property. so t and s are not unifiable (see Theorem I).

If both I and s are non-variables with root symbols in the same equivalence class, then we form -

homogeneous terms and determine the preserving substitutions, Preserve(t. t) and Preserve(s, ).

The union of these substitutions is well-defined because the domain of each contains only new

variables from f and 9, and these two variable sets are disjoint by construction. We will refer to their

union. -. as the combined preserving substitution. P is found by unifying homogeneous terms in the ""

appropriate sub-theory, and the preserving substitution is combined with each p E P by unification of .- -

substitutions. The set of unifiers. X, is returned after restricting the domain to the variables in t and s. "--"" -

(Note: for readability, we have extended the notation for restricting substitutions to denote restriction --

of a set of substitutions, i.e., v = {lv I oaEY-).)

34

. . -. . .

-. - . -- - ". -- .,-.."



CR-unify p proc (1, s: term) returns (subst-set)
case

is..variable(t) and is_variahie(s)
retu rn(({t.-s))) % case 1

isyvariable(t) and -is-variable(s)
return(CR-variable-unifyQt, s)) % case 2

is-variable(s) and - is_variabeQt)
retu rn(CR-variable-unif y(s, t)) % case 3

t.head *s.head

return (0) % case 4
t.head =s.head % case 5

=Y Preserve(t, f) U Preserve(s, ~
P:= E [fhed]flhtfy (,
X : U map-unify(p, y)

pEP
retur(jytr

end
end CR-unify

CR -variable -unify = proc (v: variable, s: term) returns (subst..set)
y Preserve(s, ^S) a.

case
V(s)~ % case A

return ({{v +- s))).-

v E 1s) v (J~y)% case B
P:= EEshead]*funiy (v,

1= U map-unify(p, .)
pEP

retu rn(I V)urs))
v E is) & v E(y)~ % case C

retu rn(0)
end

end CR-variable-unify

Figure 2-3: The CR-unify Procedure for Equational Unification

35



2.3 An Example

This example shows unification in the equational theory, E, as presented in Figure 2-1. Let the

input terms be, t = b + (x -y) and s = a + z. Both are non-variable terms and the sub-theory of the root

operator (+ in both cases), is presented by E. The relevant axioms for this example are E1 , the AC

theory for +, E2 the AC theory for ° with idempotent constant a, and E4 , the empty theory with

uninterpreted symbols bf, and g.

Calling CR-unify(t, s), we find that case 5 of CR-unify is appropriate for two terms with roots

constrained by the same sub-theory. Following this branch, we compute the homogeneous terms, r

and .. The set of constrained symbols for E1 is { +).

t=v 1 +v 2  ,=v 3 +z, lo.

The preserving substitutions are:

Preserve(t, t) = {v 1 -b, v2 +-x y} Preserve(s, f) = {v3-a)

and the combined preserving substitution y( = Preserve(t, t)oPreserve(s, 9) is:

{v14-b, V2 +-X y, V 3 -a)

The homogeneous terms are unified in the sub-theory E 1, the AC theory for +. AC-unifying F and

results in a complete set of AC-unifiers. This set will contain two unifiers that are within= of:
E

p1  {V34-V1 ,Z'- 2 "

P2 = {v3"v2' Z.-v1 .'

We proceed by calling map-unity with p1 and y. (Both p, and P2 will be considered eventually and

the choice of which unifier to look at first is arbitrary.)

map-unify(p,, y) = map-unify({v3+. V1 z4*v2 ),{v V '-b, v2+-x -y, v3 -y}-

Recall that a substitution maps each variable outside its domain to itself. The corresponding pairs

of terms are thus:

from pl: plz V ' lV1
=
V1P 2

=
V2P 3

=
V1-.:i:

from y: Yz = z yv1 = b Tv2 =xy v3 =a

In this example, each recursive call to CR-unify will yield a singleton set of unifiers, although this will

not be true in general. (If, at any point, more than orne unifier was returned, we would proceed with

each in depth-first fashion.) We will show the inputs to each call to CR-unify, the resulting unifier set, . -

and the effect of applying the unifier on the pairs of terms. The pair of terms for z is unified first,

because it is the only element of V the order of the rest of the calls is arbitrary.

36

o" . -" - • . % . o . , - . • " , • - . ' o . , , . % .



...... ------- ~- x - . -. *

1 ~'-'I: )returns {{:.-i 1 'v~

from p,: 2 2

from 1 2 b x 0. a

* 2. CR~-unit y(h. v i returns {{ v 1 -b 1

from p, V bW

from y: V 2 b Xy a

*3. CR-unit y(h. v .yJ fails, since 1, and *are not in the same equivalence class.

This ends the call to ma.D-unhty for p,.

We call map unify ag3in. this time with P2 and -y.
nmap-un y, 2 y map-unit y({v(~2 1 .v 1 -,1~ '~3

* The corresponding pairs of terms are:

roP2: P2 1 V 1 P2V I'I P2"2 2 P~2'3 ~2

from y: Y= -Y 1  b y 1-X) -Y r a

The following sequence of calls to CR-unity results.

1. CR-unity(z. v returns {(:-v 1

from p1 : V V1  V 2  2

from y: Vb x' a

2. CR-unit y(b, vl returns {{v -bl)

from p,: b b Y

from y: b b x sy a

3. CR-unify(x sy, vi returns {{ 24X .

from p,: b b xy *YX 0)

fromy: b b X Oy a

4. CR-unit y(x *y,, a) calls E 2 'unify since both terms are homogeneous in {,a) This results in

* the singleton set of unifiers {[x +-a, )-a))

from p1 : bb a*a aea

37



from -y: b b a*a ""-

-* Composing the unifiers from steps 1 through 4, we get the substitution: .-

' ~{x 4-aj ,y-a,z +-b, v I +-b, Y 2 +-a *a)}t . ."-"

or restricting to the variables in t and s:

{x 4-a ,y 4-a ,z i-b }.

We check that this is indeed a unifier of t and s by applying and testing for E-equality.

b + (a *a) =a + b .,..,.

2.4 Difficulties in Exending CR-unify

The restrictions of confinement and regularity were carefully chosen. Two arguments will make

this point clear. Mol importantly, we will prove in Chapter 3 that the restrictions are sufficient, i.e.,

that CR-unify is consistent, complete, and terminating for the confined regular theories. This section

is devoted to showing the necessity of our restrictions. We will show that CR-unify is not complete for

theories that are either unconfined or non-regular. A great deal of effort was put into the design of the

CR-unify algorithm, and a number modifications attempted for the purpose of weakening the restric-

* tions of confinement and regularity. Although none of these modifications solve the more general

* problems, the incorrectness was not always obvious. We include some examples in this section that

point to problems in the modified algorithms.

The modified algorithms will be within the framework of our approach, i.e., E* will have a par.

*' titioned presentation defining the sub-theories and these sub-theories will be assumed to have com-

plete and terminating unification algorithms. Since the problem with CR-unify is completeness, the

modifications will involve changing a failure case to a non-failure case.

The first example shows that CR-unify is not complete for unconfined theories because case 4 of

the procedure signals failure when the head symbols of the two terms are constrained by different

sub-theories.

Example 1.

E :f(x) = x t =f(x) s =g(y)

E2: g(x) = x

Case 4 of CR-unify applies because f g, so CR-unify returns the empty set. However, the substitu-

tion {x +-y ) is a unifier of (and s.

Note that if we replace case 4 of CR-unify with two recursive steps, one for each sub-theory, the

problem in Example 1 will cause the procedure to loop.

38) O"



Example 2. ***,p

A fX) V1

~~~= = g(Yy1 .

=f { 2+-f(X))
E1-unify(f(x), v1 returns the single unifier

Map-unify(yl, p) call CR-unify on:

g g(Y) s' =f(x)

which is the original problem.

The procedure will similarly loop on the second recursive call that starts with E2.unifying r1 and .

Example 3 is another example in which a unifier exists, but the CR-unify algorithm will fail to find it. -

In this example case C of CR-variable -unify is the incomplete step.

Example 3.

E1 f(O X) X tfPX, g (Y'Z)) 8=2

E2 g(1, X) X

This example fails in case C of CR- variable -unify, because z occurs below an inhomogeneous sub-

term of s, although the substitution f{x 4-, y 4-2) is a unifier of t and s.

Again, if we replace case C of CR-va riable -unify with a recursive step as in case B of

CR-variable-unify and case 5 of CR-unify, the procedure will loop.

Example 4.

tf(x, V I)z

T {V *v-g (Y'z)}

E1 .unify(f(x, v 1), z) returns a single unifier

p = i4-f(x, vi)).

Map-unify(y, p) will call CR-unify on:

ti = v IS 1 g (y, z) and

= f(x, v 1) S2 =Z.

CR-unify(v 1'g 0j', z)) returns a single unifier:

=V {4-g (y, zU.

Applying this to the second pair of terms gives:

1 r2 = f(X~g' "Z)) a ^2

which is the original problem. .-

39

V, -- °..o

T-e ur 'za!.on problem in Examples 3 and 4 are correctly solved by replacing with a constant

or by E malching , by % as suggested by [Tiden 85] However, Example 5 shows that these methods -*..

do not work in general.

Example 5
El:.I(l , V = + t =h(.t(.,y) S = r .,= x..+ -.. +-

E 2 h (h()= h (y) ;--'.

t=S = c

where c 1is a new constant.

The terms/l (v and c are not E2-unifiable. so this procedure will fail to find the unifier, {x. -h(v2),

Intuitively, the problem illustrated in Examples 4 and 5 is that the evidence of z in t is lost when t is

homogenized. If. instea4 of replacing g(. :) with a new variable, we replace it with :, then the

algorithm finds the correct unifier. Unfortunately, this technique will not work in general for non-

regular theories as shown in Example 6. Like Example 5, Example 6 is also a counter-example to the

idea of replacing a variable to be unified with a constant. In Example 5 the theory is regular by not

confined, and in Examp:e 6 the theory is confined but not regular.

Example 6.

E Elx,0) 0 t =h(f(x,y)) s= y

E (h unconstrained)

t'=h) s = y

where t' is the homogenized form of t, but) is used in place of a

new variable because it appears in f(x,) and it is the term with

which t is being unified.
Unifying h (1 andy in the empty theory will fail, so the E-unifier, Gj'.-O), will not be found.

Examples corresponding to 3 and 4 also exist for non-regular theories. The unification problem in
Example 6 shows that case C of CR-variable-unify is not complete, and that modifying case C to

perform recursion will make the process loop.

The examples themselves are interesting, but a general concl,,sion can also be drawn, namely,

": that the properties of completeness and termination conflict. These examples also motivate the

careful proofs in Chapter 3, since some of the completeness problems would not arise in the intuitive

arguments of the lemmas, but would arise in the careful inductive proofs of the theorems.

40

. °... .. •°_•, .- •.. °L.

We also note that the trivial failure cases in classical unification, i.e., clashes and cycles, are no

longer failure cases in many equational unification algorithms. While the relaxation of clash detection

has been treated in the literature, the difficulty of detecting cycles in theories such as idempotence, ____-_-_

where unifying IJA') and x does not cause a cycle, has been underestimated.

• -..

'. %" . ,-- o

4e

41. "::}:

Chapter Three

Proof of Total Correctness

• %' ,.o'... ' 1.l

This chapter presents the proof of total correctness for the CR-unify procedure. The correctness
proof is divided into a consistency theorem, a completeness theorem, and a termination theorem.

The consistency and completeness theorems, given in Sections 3.2 and 3.3, respectively, are proved

by induction on the depth of recursion and are therefore dependent on the termination theorem in

Section 3.4. The proof of termination is by induction on a noetherian ordering on pairs of input terms;

it is a generalization of Fages' proof of termination for AC-unification [Fages 84]. Before presenting -

the three correctness results, we will begin in Section 3.1 with some definitions for the proofs and

,- some important theorems having to do with our restriction to confined regular theories.

The correctness proofs depend on CR-unify being protective. For the sake of thoroughness, we

present a more careful description of the naming of new variables in Appendix A, along with a

discussion of protection. Throughout this chapter we will assume each new variable is one that has

not occurred previously and thus, for example, the new variables used in forming l' and 9 in CR-unify

are disjoint from new variables generated within an invocation of a sub-theory unification algorithm.

• - The formal discussion of protection and naming of new variables is relegated to an appendix because . -

it is more technical than interesting. ." -

3.1 An Overview

Throughout this chapter we will assume a given set of equations, E, defining a strictly consistent

equational theory. E° is partitioned by 7r = {El, E2 E, which also defines a partition on the

signature, F, of E° . For each sub-theory there exists a complete, consistent, protective, terminating

unification algorithm. We make no other global assumptions on E° and will be careful to point out ' "

cases in which E is assumed to be confined or regular.

Each of the three main theorems, consistency, completeness, and termination, is proved by induc.

tion. We could imagine combining the three proofs into a single inductive proof of total correctness. -.-

This is not necessary because the termination proof does not depend on the recursive calls returning

complete sets of unifiers, but depends instead only on the termination of the recursive call and some

42

t ."... ..

-. i i - - - - . - . - . . • .. "

,,tec,,1-c ,es cf the returne- substitutions Ho.vever. the proposed single correctness proof

.will ;ro.ride a usefli structure for demonstrating the overall structure of the three proofs.

First at each step some progress must be made towards finding an answer so that the next - -
.0,

unfication poblern to be solved is, by some measure easier than the current one; this property, .- ., -- -
along with the fact that our measure of complexity does not decrease infinitely, implies termination.

Second. each step must generates some piece of what could turn out to be a legitimate unifier, i.e.,

we cannot generate any incorrect pieces. This is the criterion for consistency. Finally, every pos-

sibility leading to a good answer must be considered. The set of partial answers generated at each

step must be complete in the sense that every most general unifier can be formed from one of the

elements of the set. This property will give us completeness. By separating these three independent .
,J , k-- .

properties into three theorems we are able to focus our attention on one of the correctness

properties at a time.

In proving the inductive hypotheses in the consistency and completeness proof, we need to show

that the basic approach to breaking down the problem and building up the solutions is correct.

Intuitively. we would like to show the diagram of Figure 31 is correct. Although we will not prove this

diagram commutes. it will help motivate the technical lemmas in the proof of completeness, and is

very close to the correctness diagram that will be proved. There are two levels of detail at which the

diagram should be viewed. Consider first only the mappings, i.e., the labels on edges, and note that

the right and left halves are mirror images, each showing op =a y. Now consider the labels on
E

vertices. t and . are homogeneous terms and t and s are some possibly inhomogeneous instances of " -

these terms, p is an E.-unifier of Jand 9, and a is an E-unifier of t and s. ,"

p p

igurs os it i t -.-. '

Figure 3-1: Diagram Exemplifying Correctness Properties

The consistency argument says roughly that if y is the preserving substitution for T, t, and ,, s,

43
t

then for any sub-theory unifier, p, of the homogeneous terms, all E-unifiers of p and y are E-unifiers of

t and s. The completeness argument says roughly that for any E-unifier, o, there exists some sub-. '

theory unifier, p. of the homogeneous terms, such that o is an E-unifier of p and y. -

3.1.1 Definitions for Terms in E*

Because E is partitioned, the terms in T/ have some interesting properties related to the par-
E

titioning. This section establishes some new concepts for describing these properties.

define another partial order on terms that is contained in -< but takes into account the equivalence

classes of function symbols defined by w. .

If o is a proper occurrence, let prefix(o) be the string o minus the last number, i.e.,

for all o€c, there exists i such that o = prefix(o).i. In the tree representation of terms, prefix(o)

indexes the parent of the node at occurrence o.

Definition. Given a partition, =, on F, a term, t, and an occurrence, o E O(t), o is said to be'I

significant in t if and only if either:

1. o = e, in which case tio = 1,

2. or, o is not strict in t, i.e., t/ is a variable,

3. or, (t/o).head# (t/prefix(o)).head.

In other words, an occurrence in a term t, is significant if the subterm at the occurrence has a head

symbol in a different partition of F than the symbol it occurs under. In addition, the empty occurrence

and all variable occurrences in a term are significant.

Definition. The term s is a significant subterm of t, denoted s-<.t, if and only if:

3 oEO(t) such that t/o = s and o is a significant occurrence in t.

Note that s may appear at both significant and insignificant occurrences within t, but if at least one

occurrence is significant, then s is significant in t. If s is proper in I as well as significant, we write -

s-<,t.

Let F be partitioned in to { + }, {oa), (1 and {b,f, g} as in Figure 2.1. Figure 3-2 shows a term -

with all of its significant subterms outlined. As noted, a is significant in its first and third occurrences, "-S '.-

but not in its second occurrence.

A suggestion of the relevance of significant subterms comes from considering an arbitrary term, t,

44

IkI

fL fL

f g g

a/\ /X a

b a a

Figure 3-2: A Term and its Significant Subterms

its homogeneous form, t, and the preserving substitution, I Preserve(t, 1). All terms in %1Y) are

*. significant in t. The only significant subterms of the homogeneous term, t, are r itself and the

variables in the t.

Next we define the notion of the parents of a term t in s, denoted Parents(t, s), where a parent is an -

operator symbol in s having t as an argument. A special null operator, n, is included denote the

parent of a term within itself.

Definition. The parerts of t in s, written Parents(t, s) are:

S1. if t = s, then Parents(t, s) = in),

.* 2. otherwise, Parents(t, s) = f 3 Jf(s,Sn)-<s & (3i, s| = t) .

This definition is extended to equivalence classes of F by considering only those classes with a

representative in Parents(t, s):

Definition. The parent sets of t in s, written ParSets(t, s) are:

1. If t = s, then ParSets(t,s) = ({n }}, r-
*'i 2. otherwise ParSets(t, s) = {J IfEParents(t,s)).

Taking t to be the term in Figure 3-2 and using the same partitioning on F (+, { , a, {) and {b,f,
g)), we get the following values of parents and parent sets in t.

Parents(x, t)=(.) ParSets(x, t) ={{, a))

45
- ." " .-. " ..

.. .- " -.

-,.. ...-.- -,r .

P.-) = {. * ParSers(.1= {(., a , [b .- -
N re - t,,;(-a (gParSets(% -. f) ={(b,f g)) J

Paren~s(:. t)= {) ParSets(: t) = {{) .

: 't'. ; ', r e 7s f) nParSets(f, t) n

3.1.2 Properties of Confined and Regular Theories 4.

As stated in Section 2.1.3. we will limit the set of theories in E* by two syntactic restrictions: 00
confinement and regularity. In this section we give some of the lemmas pertaining to confined and -- V

regular theories, characterizing the ways in which unification is simplified in these theories. For both

confinement and regularity, we first prove that the restriction on the axioms is equivalent to the same

restriction on the theory.

3.1.2.1 Confined Theories

Recall the definition of confined theories limits the equational theories to those containing no

equations with a variable equal to a non-variable. Lemma 1 shows that we eliminate exactly those 3 -

theories that are unconfined by eliminating those with unconfined presentations. Lemma 2 will show

that confined theories contain only equations with head symbols constrained by the same E , and

Theorem I relates this property to the unification problem.

Lemma 1 and a number of other proofs involving equational theories will be done by induction on

the length of proof. By the completeness of the inference rules in Section 1.4.2, we know that if t =sE
then there exists a finite proof off =s, starting from the axioms in E and using only the five listed

inference rules. We use this fact in the proof of Lemma 1, for example, where we want to show there

are no equations in E" that are unconfined if there are no equations in E that are unconfined. To

show any equation I=s is confined, we need to show that the inference rules on! prove confined
E

equations, when they start with confined axioms. If we measure the proof as the number of steps,

where each step requires application of one rule of inference, then the basis case is a proof of length

zero. If the equation is proved without any inference rules, then it must be in the set of axioms.

The inductive step proves that a proof of length n + 1 gives only confined equations. assuming

proofs of length n give only confined equations. Proving the induction step is done by examining " "'i

each possible inference rule that could take us from the n to the n + 1 st step. If the transitive rule

was the last step in a proof of t =s, then there must have been some other term, r, such that t =r and
E E

r =s were proved in n steps or less, We can therefore assume the inductive hypothesis on t =r and ".:
EE

r =s, which says both equations are confined. Combining this with the fact that the term r occurs in
E

both equations, we know that either t, s, and r are all variables, or t, s, and r are all non-variables; in

either caoe the equation t =s will be confined, and the induction step for transitivity is proved.

46

- - ... -- - - - - - - - - - - - - - - - ..-. . .

71~~~ ~~ .. -- 7 " .. . I . 7 7

Lemma 1: E is confined if and only if E" is confined.

Proof. One direction (=) is obvious, the other will be proved by induction on the length of proof in

E'. Let E be confined and show that any equation, t =s, in E* must be confined. -. .E

1. Basis: t =s is an axiom in E, so t =s is confined because E is confined.
E E

2. Inductive step: If t=s has a proof of length n, then consider each possible inference rule for
E

the last step in the proof:

A. Reflexive: Trivial.

B Svmmetric and transitive: Follow directly from the induction hypothesis.

C. Equality: Yields only pairs of non-variable terms.

D. Instantiation: From t' =s' deduce at' =as', where t is at' and s is as' and t' =s' has a proof
E E E

of length n-1 or less. By the induction hypothesis, either t' and s' are both non-variables

or both variables. If they are both non-variables, t and s will be also. If they are both " '. -

variables, then they are the same variable (by consistency of E*), so t and s are either

both the same variable or both the same non-variable term.

0

One condition used in our proof of correctness of CR-unify is that E" is a confined theory. Lemma

2 shows that in confined theories there are no equations whose right and left head symbols are

constrained by different sub-theories. This gives us the invariant, stated in Theorem I, that two

non-variable terms whose heads symbols are constrained by different sub.theories (froii, 7) of E* are

not E-unifiable. We make use of this fact in case 4 of CR-unify where an empty set of unifiers is

returned.

Lemma 2: If E' is a confined theory, then I =s t.head =s.head.
E "

Proof. By definition, r presents the same theory as E, although the two may contain different

axioms. We will make use of this fact by performing induction on the length of proof that t =s starting

from the axioms in ir, rather than the axioms in E.

1. Basis: If t =s is an axiom in some E E7r, then because 7T defines the partition on F,E

t.hea4 =s.head.

2. Inductive step: Consider each possible inference rule for the last step in the proof.

A. Reflexive: Trivial.

B. Symmetric and Transitive: Follow directly from the induction hypothesis.

47

..................

C. Equality: Yields only terms with the same head symbol.

D. Instantiation: From t' =s' deduce at' =s', where at' = f and as' = s.
E E

i) If t' and s' are non-variable terms, then by the induction hypothesis t'.head =s'.head
and hence t.head =s.head.

ii) If either t' or s' is a variable, then they are both variables and both the same variable.

Therefore t and s are the same term and the property holds trivially.

0

Theorem I: If E° is a confined equational theory, and t and s are non-variable terms such that

t.head~s.head, then t and s are not E-unifiable.

Proof. Any instance of t and s will have the same non-equivalent head symbols, and by Lemma

2 these two terms cannot be equal in E° . 0

3.1.2.2 Regular Theories

The restriction to regular theories is needed for case C of CR-variable-unify, a failure case. I.e.,

because C is a failure case, CR-unity is not complete for all confined theories, but regularity along

with confinement of E° is sufficient for completeness. (See Section 2.4 for an example showing

incompleteness of CR-unify for unconfined theory and a non-regular theory.) The key result of this

section is Theorem I1. It states that a variable is not unifiable with a term, t, containing that variable if . -. "..-.-

the variable occurs below the homogeneous part of the term, i.e., at an occurrence not in r. Lemma

4 is used to prove Lemma 5 which in turn is used to prove Lemma 6.

Lemma 3: E is regular if and only if E° is regular.

Proof. Again, one direction (=) is obvious, the other will be proved by induction on the length of

proof in E'. Let E be regular and show that any equation, t =s, in E* must be regular.E

1. Basis: t =s as an axiom in E, so t =s is regular by the hypothesis on E.E E •., .

2. Inductive step: Consider each possible inference rule for the last step in the proof:

A. Reflexive: Trivial.

B. Symmetric and transitive: Follow directly from the induction hypothesis.

C. Equality: From ti =s., 1 $i_ n, deduce f(t t) .f(s , where t isf(t.... t) and s is

f(s sI). Since t contains the union of all variables in the t's and s contains those in '''-

the s.'s, these two sets are equal because they are each the union of n pairwise equal -

sets.

48-

D In it,.!txion From deduce ar' =os'. where r is o' and s is as'. By the induction
E E

h pctn-esis. it) = so). so consider each t in this set. If v is in the domain of a, then

the variables in a. will occur in both t and s and otherwise i itself will occur in both t

and s. .

The property gained by restricting E° to a regular theory can be seen by considering the set of all

significant subterms of a pair of equivalent terms. Lemmas 4 and 5 characterize this property W
precisely: Lemma 4 states that any variable occurring in two equivalent terms, will occur under the

same set of parent sets. i.e.. equivalence classes of parents; Lemma 5 shows that given two con-

gruent terms, the sets of all significant subterms of the terms are equal modulo E.

Lemma 4: If E ° is confined and regular, and t =s. then for all vEV. ParSets(v, t) = ParSets(v, s).
E

Proof. By induction on the length of proof of t =s starting from the axioms in w.
E

1. Basis: If t =s is an axiom in some E E€r, then t and s are homogeneous in the constrained
EI

symbols of E". and there are three cases: . .1'

A If i(t) then by regularity of E. v ((s), so ParSets(v, t) = ParSets(v, s) = 0.

B. Eilt) and t is a non-variable term. then s is a non-variable term and by regularity of E*,

Eis). Therefore, ParSets(i, t) = ParSets(v, s), since equations in i7 are by definition

homogeneous.

C. If t is a variable and v = t, then s is the same variable. Therefore, Pa.rSets(v, t) = - ... -

ParSets(v, s) = {{n))}.

2. Inductive step: Consider each possible inference rule for the last step in the proof: use one

of the following inference rules.

A. Reflexive, symmetric, and transitive: Obvious.

B. Equality: From 1 i n, deduce.f(t t) is (t t and s is

(s1 n). If t and s are non-variables, then by the induction hypothesis, all variables in

t. will occur under the same parent sets in s. and vice versa. If t. and s are variables,

then they are the same variable so both will occur under the equivalence class, [.]. _

C. Instantiation: From t'=s' deduce at'=as', where at'= t and as'= s. Consider the follow-
E E

ing two cases on the occurrence of v in at'.

i) If the occurrence of v in at' is also in t', then by the induction hypothesis there is "

some occurrence in s' under the same parent set. The same is true with t' and s'

reversed.

49

• .--...... -:-...-. --:- . b. i i .. -: -t.. .. . " -... : :. : -* .- '-. : :: :.:-:-: ':

ii) If the occurrence of r is in at' and not in t', then ' must be an element of J(a) or,

restated, there exists v 'E9(a) such that i, E fja v') and ' Er'. By the induction

hypothesis, ParSets(v', t') = ParSets(v', s'), and if av' is simply the variable, r, then

all occurrences of t, will correspond to an occurrence of v' in both t and s. If av" is a

non-variable term containing ', then by regularity, the entire subterm (a ,') will occur

in both t and s and thus v will occur under the same operators in both.

0 1

Lemma 5 states that if t =s, then there is a one-to-one correspondence modulo E between the
E

significant subterms of t and the significant subterms of s. The main purpose of Lemma 5 is to prove '. .-. . .

Lemma 6, although the result is interesting in its own right as a property of confined regular theories. J

Lemma 5: If E* is confined and regular, and t=s, then for all t'-<.t there exists s'-<Ys such that . .
E

t, =s'.
E

Proof. By induction on the length of proof that t=s, starting from the axioms in wr.

1. Basis: If =s is in some E Eiv, then t and s are homogeneous with respect to the symbols

constrained by E*. Therefore, the only significant subterms in I are t itself and the variables

in Tir). If t' = t, we can take s' to be s, and if t' is a variable in t, we can take s' to be the same

variable, which must an element of Tls) by regularity of E*.

2. Inductive step: Consider each possible inference rule for the last step in the proof.

A. Reflexive, symmetric, and transitive. Obvious.

B. Equality: From t. =s., 1 :5i5n deduce f(till~.t n) f~l...n).wee s~1 ..)adsiIE
f(si ,... Is). By the induction hypothesis, for every t'-<Yt, there exists __<- s such that

('=s'. Furthermore, by Lemma 2, thead = s..head, so t. will be significant in tif and only
EI E i

-

if s, is significant in s.
C. Instantiation: From I, de at s where I is adt axis is s. Consider t

i) If o is a strict occurrence of 0(t), then by the induction hypothesis on n, there exists

costo'(s) such that t1/0 =s,/o. Applying a to these two equivalent subterms we get

n t) / = as /o', but at'/o is a lso we can take s' to be as. /0'.

ii) If o is a variable occurrence, then o is variable, call it v. By Lemma 4,

ParSets(i',t =i ParSe fs(v, s1). Therefore, I' will itself occur significantly ins if and 7 i---

only if it does in i.

50

....... s r.i.... .and . O.v------

B...o. .E.,1-.-.,.e ue.f(.. t)- .(I ... n, h r ti '(1 ... n a dsis .' .' '

io - - .
-

iii) If 0O (t1), then t' is a proper significant subterm of at for some -E'J(a). By - -

regularity of Ei,v ETt 1) EiIs1), so a' will occur in s=os1 , and hence t' will

occur significantly in s.
[3 , .- 'P .- .-

The above lemmas give some general properties about confined regular theories. More specific

to our purposes is the following lemma, which gives a sufficient condition under which terms are not

equal in the theory. Lemma 6 states that no term is equal modulo E to any subterm of a proper

significant subterm of itself and is proved by induction on the structure of terms, i.e., using the

subterm ordering. Theorem II relates the equality problem back to the the unification problem. . . - -

Lemma 6: If E" is confined and regular, and t, s, and r are terms such that t-<r-<js, then t s. , 4-.
E

Proof. By structural induction on s.

1. Basis: Ifs is a variable or constant, then 3'r-<js, so the hypothesis is vacuously true.

2. Inductive step: If s is a non-variable, non-constant term, then there are three cases to

consider with respect to t.

A. If t is a variable, then tcs by the confinement property of E*.
E

B. If tis anon-variable term such that t.head#s.head then t~s by Lemma 2.
17 E -- p-

C. If t is a non-variable term such that t.head =s.head, then assume t =s and derive a -
'7 E

contradiction.

3 s' such that t-<s'-< s and s'.head~s.head. (The existence of the significant subterm, -

r, between t and s implies the existence of s' with inequivalent head.)

Since t.head~s'.head, t--<s'--<-s.

By Lemma 5, t =s and s'-<js implies there is some t'-%yt such that t' =s'.
E E

From Lemma 2, t'.head =s'.head.

Therefore, t'.head t.head, and, again, t' must be is proper in t.

So far we have t'-- jt-<s'-<js.

Apply the induction hypothesis to s', using t' for t, s' for s' and t' for r, respectively.

By the induction hypothesis, t' s', but this is a contradiction, since t' was chosen such .
E

that 1'=s'.
E

50 -: : -.--

51

:_:::.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~- ..--. -:: :.::. :..:..-::.:. .:.:::._.:.

The mart rest for confined regular theories is in Theorem 11. which shows that case C of

CR 6a- uv ',:. should be a failure case.

Theorem 11: If E ' s confined and regular and r and s are non-variable terms such that r-cs and

vEiI), then tand s are not unifiable.

Proof. If a is unifier of and s, then:

011,-=US
E

and. furthermore, the following property holds:

* This contradicts Lemma 6. so no such a can exist.0

Note that the existence of the significant subterm. r, in both Lemma 6 and Theorem 11 is necessary.

Without the Theorem would state that no variable is unifiable (in any confined regular theory) with a

term that contains it A simple counterexample to this stronger statement is the pair of terms f(x)

and Ain thn it, tiry .2fted by E (): the terms are unifiable though E* is confined and
E

* regular

The impoimnt re,5ult of this section are Theorems I and 11. Theorem I will be used to show the

compleleness ct case 4 of L:-- uif,. where the empty set of unifiers is returned for two non-variable

terms with heads constrained by different sub-theories. Theorem 11 will be used to show the cam-

pleteness of case C of CR hariable-unifty, where the empty set of unifiers is returned for one variable-:---

and one non-variable term when the variable occurs in the non-variable term below its top '",

* ~homogeneous part. --

3.2 Consistency

This section presents the proof of consistency for CR-unity. The key lemma for consistency,

Lemma 7, can be explained informally as showing that any substitution which unifies a sub-theory

unifier, p, with the preserving substitution, will also be a unifier of the two terms, t and s (where the

notation here is that of the CR-unify procedure). This lemma alone is not enough to show consis-

tency, since the consistency of CR-unify depends on the consistency of mapu noy, which in turn

depends on the consistency of CR-unity. Therefore, we will use an induction on the depth of recur-

sion for proving the consistency of CR-unity in Theorem Ill..

eLemma 7: Let F be the set of constrained symbols for EfEir and let t and s be homogeneous terms in

F.. If y, p, and a are substitutions then:

Pt = ps & aop =UaoY G (aYS).
Eo eE E

52

-,.* .%:-- - . C:. U 1 < a . .-.. a.s ~ -~

Proof.

pt E ps = pt ps, since E is a sub-theory of E

o(pt) = a(ps), by applying the substitution, a
E

=> (aop)t = (aop)s, from the definition of composition

= (o y)t = (ro 7y)s, substituting coy for a0p

E= o(.t) = O(,Ys) '..,--

0

The consistency theorem is given below. The proof is done on a case-by-case basis, where the - 7

cases are those appearing with labels in CR-unify algorithm. The basis cases are those in which no

recursion is done and the inductive steps are those that involve recursion. Theorem III uses Lemma

7 in proving the inductive steps. "-

Theorem Ill: If a is a substitution produced by CR-unify(t, s), then a is an E-unifier oft and s.

Proof. By induction on the level of recursion of CR-unify.

1. Basis: Cases 1 and 4 of the CR-unify procedure and cases A and C of CR-variable-unify, as

called in cases 2 and 3 of the CR-unify procedure:

A. Case 1: t and s are both variables, so ft 4- s) is a unifier.

B. Case 4: Returns the empty set, so the theorem holds vacuously.

C. Case A: i, does not occur in s, so the single returned substitution, {v -s}, is a unifier.

D. Case C: Returns the empty set, so the theorem holds vacuously.

2. Inductive step: Case 5 of CR-unify and case B of CR-variable-unify are the inductive steps.

A. Case 5: t and s are non-variable terms, f'and 9 are their respective homogeneous forms,

and y is a preserving substitution for both t, land s, 9.

By consistency of each of the E..unify procedures, each pEP is a unifier of tand 9.

Choose a value for p.

Each uE- is generated by map-unify(y, p) for some p, and is therefore of the form

Wn°...°W1 , where wiECR-unify(wi.1 pv i, jj.1*fv). By the induction hypothesis, each

value of w. is a unifier of w.i.lpv and wi.lyvi, so a is an E-unifier of each correspond-

53 S. . ,,.,

- - - - - - - . -- " - -i . 2 V - - *- - ------ - -:i i : ; i 2... ' - - . -- .i 2"

ing par of terms in the range of p and y and is therefore a unifier of p and y ,

themselves.

y p. and o. meet the conditions of Lemma 7 with T and 9 for t and s in the lemma and t

and s for yt and ys in the lemma, so o is a unifier of t and s.

Therefore.o [It)U 1s) is also a unifier of t and s.

B. Case B v is a variable. s is non-variable term. is the homogeneous form of s and y is a

preserving substitution for s.

By the assumption of consistency of the E.'unify procedures, each peP is a unifier of v

and "-

By the same argument as in case 5. each uCl is an E-unifier of v and s in

CR.variable-u-fy. which is exactly the pair of terms t, s or s, t of CR-unify.

Therefore. aI{ j } s is a unifier of t and s of CR-unify.

0

3.3 Completeness

In this section we will prove that CR-unify is complete for all confined regular theories. The proof ".,.."

of the completeness theorem. Theorem IV, is done by induction on the depth of recursion, and its

structure is similar to the proof of consistency, Theorem III. The proof of Theorem IV i,. given in

Section 3,3.3, and uses a number of lemmas developed in Sections 3.3.1 and 3.3.2. The main lemmas

are Lemmas 12 and 13 in Section 3.3.2. the proofs of which rely on the technical definitions and

" lemmas of Section 33.1. The proof of Theorem IV will also use Theorems I and i1, s.'ce each gives an

independent set of sufficient conditions for completeness of a failure case. Section 3.3.1 gives some

technical definitions of functions that are used in the proof of completeness but are not needed in the

implementation

3.3.1 A New Homogenizing Operation

Our proof of completeness uses a function, U-Homog, for forming homogeneous terms. The

homogenizing operation in Section 2.1.2.1 is not unique for a given input, but may vary in the names

of new variables. The function defined here will use a special set of variables and have an inverse _-Z4

mapping which is a substitution; both the variable set and the inverse substitution are universally

54

...

defined for E. In addition, we will extend U-Homog to a function on substitutions. The functions

defined here are used solely as aids in the proof of completeness and are used in the implementation

of CR-unify.

The special set of variables used in forming homogeneous terms will be denoted by U. Each.S..

variable in U represents an equivalence class of terms in the theory, E. There is one for each .. , . --

element of quotient algebra, T(F, V-U)/ =. We will represent each variable in U as u1[t] where t is
E i]

some term containing no variables in U, and [t] represents the equivalence class of which t is a

member. By definition, we know t=s * u i.e., u and u are two denotations for the sameE it) [s]' It] I[s] .- -•-

variable. Henceforth, we will assume the existence of this set, U, as it is universally defined for E*,

and denote V-U, the complement of U, by -1U.

3.3.1.1 Homogeneity Using U

The function, U-Homog, is similar to Homog except that each maximal subterm whose head is not

in the set F will be replaced with an element of U rather than with an arbitrary new variable. The

following definition of U-Homog differs from the definition of Homog only in case 3.

Definition. Let F be a set of function symbols and t be a term containing no variables in U.

U-Homog(t, F) is defined as follows:

1. If t is a variable, then U-Homog(t, F) = t.

2. Ift = f'(t....tn) andf E F, then

U-Homog(t, F) = f (U-Homog(t 1, F),...,U-Homog(t n, F)).

*3. If t 01 ..I F then U-Homog(t, F) u

We extend the notion of homogeneity and the homogenizing function to substitutions. A substitu- --

tion, a, is homogeneous with respect to a set of function symbols, F, if and only if U CJ(t)CF. We

define a function U-HomogMap on substitutions, which is analogous to U-Homog on terms.

Definition. Let a be a substitution containing no variables from U (i.e., [6(a)U3(a)]fU = 0) and let

F be a set of function symbols. Then U-HomogMap(r, F) is a substitution such that

-- 9(U-HomogMap(a, F)) C 63(a)UU and for all v E 9(a)UU:

1. If v Ea), then

U-HomogMap(a, F)v = U-Homog(av, F).

2. If vEU, then by the definition of U, v =u for some t (where ilt)flU = 0), and

U-HomogMap(a, F)v = u]--

55

........................-..... , . , - -,* ". , -. i-"

U-HomogMap is well-defined because t =s a at =as, so picking an arbitrary I from [t] will result in a
E E

unique equivalence class, [at], and thus a unique variable, u The domain of substitutions formed

by U-HomogMap may be infinite unlike other substitutions we have used thus far. Extending substitu- C?

lions in this manner gives no additional most general unifiers, because any term has only a finite

number of variables. When the value of F is clear from context, we will use 7 and i to denote - -"-

U-Homog(t, F) and U-HomogMap(a, F), respectively.

As noted, the definition of t and 7 are identical except in the names of variables used to replace

subterms. Furthermore, if F is [t.head] as in t, 7 is an instance of t for any t, since t uses different .---

variables for each replaced subterm whereas 7 will use the same variable more than once if twc

replaced subterms are equal modulo E. Therefore, we can relate f to 7 by finding the match of 7 by r.

Furthermore, observe that this is the homogeneous form (with respect to F) of the preserving substitu-

tion for t and t.

Proposition 1: If F = [t.head] and y = Preserve(t, t), then
jt=t7.

The definition of U-Homog may, at this point, seem somewhat under-motivated. The following

lemmas describe some useful properties of U-Homog that will be used in the completeness lemmas

and are not valid for Homog. The two functions, Homog of the implementation and U-Homog of the

lemmas, are related in the completeness theorem using Proposition 1. Lemma 8 shows that U-Homog

commutes with the application of substitutions to terms, and Lemma 9 extends this property to com-

position of two substitutions. Lemma 10 is the key result of these lemmas; it justifies the division of

the unification problem in E° into unification problems in the sub-theories by showing that the exist-

ence of a particular equation in E° implies the existence of the homogeneous form of the same

equation in the sub-theories. Henceforth, we will assume that no substitution or term contains a

variable from U, unless formed from U-Homog or U-HomogMap.

Lemma 8: For any set of function symbols, F:

~~~~at=ot. ."..'-

*i Proof. By induction on the structure oft.

1. Basis: t is a variable, call it v.

- . A. If v E91(a) then -

a t = a V =a

= at, by the definition of U-HomogMap.

- . . . 5.



B. If ~$1a.then: 
-...

=.since it(() and t U CIJ

*2. Inductive step:? t f Qt1 .. td. for somef EFof arity n;-- .

A. ff EF, then: :4

= fT...,Td). because fis in F

f= 1-, by homomorphism of substitutions

= j (Wa?.W by the induction hypothesis

= f(Wo..oat~ from the definition of U-Homog

= a](ta). by homomorphism of substitutions
1--..n

SB. If f (F. then:

=OU ~ because f is not in F

=U since u (EU

= oft, since the head symbol of oftis stillf and therefore not in IF

* Lemma 9 extends the commutativity of U-HomogMap with substitution application to the corn-

mutativity of L-HamagMap with substitution composition. The proof is straightforward. .

Lemma 9: If F is any set of function symbols, then: "Ol

010 2 = a 1 f2'

Proof. ShowY vEV~ - V =iiv There are two cases:
W1 0O22

* 1. If v EU, then v = u for some term t, then:

57



010 U[t

2.lIt U:

0100 V 00 =0*V=12 = 102' =102V = 1 (o 2 v)

1(o2V) = '1(ov) = '-'J

Lemma 10 is the key to our completeness argument. Unlike Lemmas 8 and 9, which do not

assume any relationship between F and ir, Lemma 10 will take F to be a set of function symbols

constrained by one of the sub-theories. It states that the homogeneous forms (by U.Homog) of any N
two E-equal terms are El-equal in the sub-theory constraining F. It is important that F is the set of

constrained symbols for the sub-theory, E*, but we do not make any assumptions about head symbols
of t and s belonging to F. .. : _=

Lemma 10: If F is the set of constrained symbols for some sub-theory, El of E*, and E" is confined,

then:

t 8 t=S s
E E

Proof. By induction on the length of proof of t =s, starting from the axioms in v.

1. Basis: If t =s is an axiom in some E.Edr, then:
E

A. If E. = E., i.e., t =s E E, then t and s must be homogeneous in F. Therefore, T'= t, S= s,
E

and 7 = E E Ei, so there is a proof in E.

B. If EiEi, i.e., tEs ( E. then assume, since E is confined, that both t and s are non-
variables. Furthermore, by disjointness of function symbols in elements of, we know ,.

[5(t)Ucj(s)]nF = 0. Thus, T= u and s= u183 and since t=s, it follows from the defini-

tion of U-Homog that u and u are identical and thus u [t] U181 by reflexivity.

2. Inductive step: Consider each possible inference rule for the last step in the proof.

A. Reflexive, symmetric and transitive rules: Obvious.
B. Equality: From t, =si, 1 : i_5 n, deduce f(t .... t) f(s I ..... ), where t isQ(I .... tn) and sis,..--

EE
J'(S1.....s n). By the induction hypothesis, iFiSifor 1 :5 i:5 n. There are two cases onf':,""""'':

i) Iff EF, then t=f( 1.....T) and s'=f (s ...'n), so 7= 'is implied by the equality rule.
E.

ii) If.f (F, then T= u and g= u Since t=s, u and u are identical, and thus 7= i
It) - S inc E V)] [s) E.

by reflexivity.

58

............................................. .. .. •. :. =====.======== ===========================================



C. Instantiation: From t' =s' deduce at' =as', where t is at' and s is as. By the inductive '

E E
hypothesis we know " = E and applying the substitution a to this equation we get

E.
" T = O, which by by Lemma 8 implies it = F'. But, at' is t, and as' is s, so this gives

E. E

E.

Note that the assumption that E* is confined is necessary. Without this assumption, case B in the

basis case would not hold. Consider an equation, for example, v =t, where t.head(F. In this case,

v = v and 7= u Id, but v and u it] are different variables and are therefore not equal in E*.

While intuitively Lemma 10 is the key t, the completeness argument, we must still relate the

equality problem back to the unification problem and relate the U-Homog forms of terms in the lemma ,

to the Homog forms in the algorithm.
, p ' ° = - . , -

3.3.1.2 The Inverse Substitution

For the homogenizing function Homog, we were able to define the notion of a preserving substitu-

tion, Preserve(t, t), which mapped a homogeneous form of a term back to the original term. For

U-Homog, such a substitution cannot be defined, since two subterms may be different terms, but

equal modulo E, and will thus be replaced by the same variable. We define instead the universal

E-preserving substitution, I, which maps each variable in U to some element of the equivalence class

of terms it represents.

Definition. Let I be a substitution such that 9(p) = U and Vu EU,/pu [t]t', such that t' =t.
E

The choice of which term in the equivalence class to use is not important but only serves to take .""

us from an element of U back to the set of terms in which we are working, terms that do not contains

variables from U. The axiom of choice guarantees the existence of such a substitution. By construc-

tion of 1 and the homomorphism of substitutions, we now have the following propdrty: .

Proposition 2: For any term, t, and any set of function symbols, F:

IMT
E

We would like to extend this property directly to substitutions and get =a, but because the

domain of / contains all variables in U, composing I with the homogeneous form of a substitution

yields a substitution with more variables in its domain than the original substitution. Therefore, the

extension to substitutions is the following lemma:

59

. .. . . . . . . .



Lemma 11: Let F be any set of function symbols.

E

Proof. Show V EV. (vop) i=(#oJ)%v. Consider the following cases on 1,Na

h.hI b Proposition 2 16
crwbecause U

2. If v E U, then it is of the form u11 for some term, t, and we have:

-at
E

E 41.Ll4,

3. If ~ UJothen po v = o= v

0

The property proved in Lemma 11 is expressed as a diagram in Figure 3-3. This diagram will

appear as a basic component in Figure 3-4, which illustrates the main completeness lemma, Lemma

13. Figure 3.4 will bring us very close to the preliminary correctness diagram of Figure 3-1.

Figure 3-3: Commuting Diagram for the Universal E-preserving Substitution

60



17- -. 7 W7 o •

3.3.2 The Completeness Lemmas

Having built up some background lemmas to use in proofs, we are now ready to prove the main

results leading to completeness. The first lemma, Lemma 12 shows that the decomposition process is

complete, that every E-unifier is made up only of pieces of E.-unifiers. The second lemma, Lemma 13, - .

shows that the combination process of unifying substitutions is complete, that all the necessary

combinations of E-unifier pieces are considered.

In the following lemmas, assume t and s are terms with compatible head symbols, i.e., either one is

a variable and the other is not, or they are both non-variables with roots constrained by the same

sub-theory. Let y be the combined preserving substitution for t and s, i.e., 7yt= t, 7Y = s and 9f(y) C

i'P)U1). Ei.unify will be the sub-theory unification algorithm for the sub-theory constraining the -"-

head symbols of t or s (one or both depending on whether they are both non-variables or not). --

Lemma 12:

If E is confined then:

of =as => o09=E E. '. .

Proof.

t s => 5t = Ws, by Lemma 10
E E.

=_ = 5g, by Lemma 8
E.

= = " a, by Proposition 1
5y f Woi ",, by Lemma 9

E.
0

This proves the existence of an E-unifier of the homogenized terms for any E-unifier of the

unhomogenized terms, and just as important, gives a way of constructing the E -unifier from the " "

E-unifier. This is the key to showing that our approach of dividing E-unification problems into several

E -unification problems is complete. We still need to show that the manner in which E-unifiers are -

constructed from the E -unifiers in the algorithm is complete.

Recall that in CR-unify the E -unifiers are combined through unification of substitutions with the

preserving substitution. One property sufficient to show completeness would be that any E-unifier V.

unifies the preserving substitution and the constructed E.-unifier. However, this property does not -. '-*-.-

I-I

hold in general for the following reason: some of the variables in the range of the sub-theory unifier"" ;'_Wr'"

... . . . . . . . .



.7N°_ 7. %' °+ '"

may be elements of U, whereas none of the variables in the range of Y can be in U, and furthermore, a

does not contain any variables from U in its domain, so a will not unify the two substitutions.

Instead of the property in Figure 3-1, we show a weaker but still sufficient result which states that
a is part of a substitution that unifies p and y. The substitution ,u will solve the problem of the

variables in J(p) being in U since it maps every variable in U to some term containing no variables in

*U.

Lemma 13 shows that the substitution uo is an E-unifier of y and the constructed p; and Figure

3-4 gives the pictorial representation of the proof. The proof of Lemma 13 starts from the result in

Lemma 11, just as the left-hand diagram of Figure 3-4 shows two instances of Figure 11. Similarly, the

right-hand diagram represents the last step in the proof of Lemma 13, namely the statement of the

Lemma. Note that the right-hand diagram of Figure 3-4 is almost identical to the diagrams in Figure

3-1, our original goal for a correctness diagram; the only difference is that the a arrows in Figure

3-1 are opF arrows in Figure 3-4.

JA

p 7q

a..a

IF IF
Fig. Jo a. .

Figure 3-4: A Diagram of the Completeness Lemma

Lemma 13: If a is an E-unifier of I and s, and p = ''Ilo,) then: --

a*JAOp =CQ0J 0

E
Proof. Show the right-hand diagram of Figure 3-4 frollows from the left-hand diagram.

(a°y)oIp, from Lemma 11
E

62
' __"

- - .- - - 9 • --- - - - - - - - - - - -



21*

So°/j('o°y) E aoa°lot. by applying a
E

°I(o- y) =uo y ,. by ,dempotence
E

=Z- coil = aoyoiL. since U C V
E -u

a 0 1° a10°71 E aoy. since c(p) = U

0 o o ) = a°,poy, since .()n u 0 and uc (/ )n -lnU = o '.J
U

== r aopoy, since %UoY)-,(pl9U

=c .o/ao p = aopoy. since ( (y)Uj(p))nU = 0

0

3.3.3 A Proof of Completeness

This section proves the completeness theorem for CR-unify. The proof works in the reverse

direction from the CR-uify algorithm, showing that any "good" answer was made from pieces that 2.

must be considered by CR-unfy. We assume the input terms have a unifier, and by observing some

properties of the unifier, show that either it or a more general unifier will be produced by CR-unify.

The proof may also be somewhat confusing because the result seems too weak. At every step we are

showing the there is some partially formed unifier that is more general than any actual unifier, but we

never show that the pieces form a unifier. Recall, however, that this condition was proved separately

in the proof of consistency, Theorem 11.

One of the non-obvious steps in the proof is that the minimal set of E.-unifiers is sufficiently large

to find a complete set of E-unifiers. Note that this does not follow directly from the Lemma in Section

3.3.2, since they only show that the E-unifier can be constructed (through substitution unification)

from some E.-unifier and not that it can be constructed from a minimal E.-unifier. This is important to

the completeness argument since the E-unification algorithms are only assumed to return minimal

complete sets of unifiers.

Theorem IV: If a is an E-unifier of t and s, then there exists 0 E CR-unify(t. s) such that 9 -.
E

Proof. By induction on the depth of recursion in CR-unify. Proving the induction step will require a

second induction on the number of calls to CR-unify made from map-unify.

1. The basis for induction on the depth of recursion are those cases in CR-unify for which

map-unify is not called, namely, cases 1 and 4 of CR-unify and case A and C of

CR-variable-unify under either 2 or 3 of CR-unify.

63
- °. . - o *

. . . . . . . . . . . . . . . . . .. . . .- .. . . . . . . . . . . . . . . .



A. Case 1: t and s are both variables. Any unifier of t and s is an instance of {t.-s).

B. Case A: v is a variable not occurring in s. Any unifier is an instance of {v4-s).

C. Case C: i, is a variable occurring in s and in .(y). Therefore, v is a variable in some

non-variable proper significant subterm of s, and by Theorem II, v and s are not unifi-

able. The empty set is a complete set of unifiers.

D. Case 4: t and s are non-variable terms such that t.head*s.head. By the Theorem I, t and

s are not unifiable. Again, the empty set is complete.

2. The inductive step includes cases 5 of CR-unify and case B of CR-variable-unify when

called from either 2 or 3 of CR-unify.
A. Case 5: t and s are non-variables such that t.head =s.head. Let E* be the sub-theory of

E constraining t.head and s.head and let F be the set of function symbols constrained

by E.

We will first show that the substitution p constructed in Lemma 12 bears a useful relation

to some sub-theory unifier found in CR-unify.

Let p wyI~(O

From Lemma 12 we know:
pt= ~

By the completeness of E-unify, there exists p' EEiunify(t, 9) such that

p' :1 p,forV 1 =ffUf(a).-
E

Therefore,3V such that rpap =lp and since E is a sub-theory of E,
E.

E r

Without loss of generality, assume

By protectiveness of 4' we know

(gf(p)U(p)Uq(p')U5(p))l(V-V 2 ) = 0.

Let V2 ilt)Uils) and V3 = VlUV 2 and from the previous step we have

qop' .3p.

Using these values of p, p', and p, we can show the the inductive step for case 5, i.e., 'V'

that there exists OEmap-unify(p', y), such that 8 2 a. By examination of map-unify
E

64



we know that 0 would have to be a substitution of the form wnO .. . 0(o where n is the
size of 9(p')U-1(y) and w. is the unifier of the thpair of terms. Let a. be the accumu-

ithlated unifier for the ihiteration, i.e., ai = wi~i1 ..o 0 WO, Show by induction on i that

i) Basis: Ifi =Q0, then or = W= t. Therefore, ar:5 a. (Note: n = 0 would cor-

respond to both t and s being homogeneous and equal modulo E.)

ii) Inductive step: If i>0, then let v. be the P~ variable considered in 9(p')U-1(y) for

forming corresponding pairs of terms.

vShow there exists w C CR-unify(ar,_,pv1 , ,a_,,yv,) such that a1 wi 0a. <2 CF.

:5~2 a, by the induction hypothesis on

a :2 a0ot, since 9(t)l9(a) = 0 &,iSQL)flv 2  0

34isuch that 4ou Y2ao jA, by definition of
E E

v0JLop = a0 lLoy, from Lemma 13
E

aolLop h ao)IO-y
E

aoptpqop'=3 catioy, since qiop' =3 p was shown above
E E

39)' such that p)oaojuop' 3ao,-oy, since Vx EC(q)), x 9 ~(9') and:
E

a) If x CV 2, then xECg(ca):

= ax.

b) If xECV,-V 2, then xEC9(T):

X(~IL) & xf 0(a).

c) if x IV3V1UV 2, then x is a new variable from p':

X (() & X 49(a).

Using this new substitution, 97', we have: .

q) 0 OU 0.LOP )a
E

E

9,o*C!,. 1 p 3 q~o/a~,by replacing ajIA with JOca.

Therefore, q4' is an E-unifier of ti= a11,p'vand s, a 1 7y1 ... r

65



By the induction hypothesis on t and s, there exists a substitution, w, E

CR-unify(t,.s). such that:

V il*.
t 4 .Coi, where V4 = tt)UIs1).

Since (q7') contains variables from V only if they are in 9(a),

E

Furthermore, woa ,. 1  oE 0'40.'1, since by protectiveness of CR-unity,

X EU(w ).lJ(a) only if x EV4.

We also have T'o'-ou. =li'o =y1o=1 U0 1.
E E E

v
Therefore. a, = 1 a. which which completes the induction proof on i.

V
The induction on i shows a a, which proves the inductive step on t and s in case 5nE

and therefore proves the existence of some 0 produced by CR-unity(f, s) such that ...

:5 2
E ,-.

B. Case B: The proof follows Case 5, except v replaces both t and?.

0

3.4 Proof of Termination

If recursive calls from CR-unify were made only to subterms of the original inputs, then termination

would be obvious. However, at each iteration within map-unify, the substitution accumulated up to a

given point is applied to the next corresponding pair of terms, so the terms of a recursive call are not

necessarily subterms of the original inputs, and may be larger than the inputs. The proof of termina-

tion in Section 3.4 uses noetherian induction; we define a noetherian ordering on terms which is

proved to be strictly decreasing with each level of recursion. The ordering is a generalization of the

ordering used by Fages to show termination of AC-unification [Fages 84]. The proof of termination is

a generalization of the termination proof for AC-unification [Fages 841. We consistently extend his

definitions to handle the general case for unification in equational theories. With minor exceptions,

our definitions would be identical to Fages' if we restricted ours to only the associative-commutative

and empty theories. Noetherian induction is discussed briefly in Section 3.4.1. Section

3.4.2 describes the noetherian ordering that is the basis of our termination proof and then gives some

lemmas on the ordering.

66

a-'.--.- ----- .



3.4.1 Noetherian Induction . .

Classical induction is based on a total ordering, typically the "less than" ordering on the natural

numbers. Noetherian induction is more general in that it is based on a partial ordering; the partial .

ordering is additionally required to have no infinite decreasing paths. The reader is referred to [Cohn '...

651 for a justification of noetherian induction and to [Huet 80b] for some abstract properties of order- -

ings.

A typical class of noetherian orderings that are not total are those formed as lexicographic exten-

. sions of two or more total orderings. In fact any lexicographic extension of noetherian orderings is

itself a noetherian ordering. We will use this fact in the definition of the noetherian ordering for our

termination proof.

3.4.2 A Noetherian Ordering for E-Unification

The input to CR-unify is a pair of terms, and we define a noetherian ordering on pairs of terms to

perform the induction. The partial ordering on terms defined by the subterm property is not accept-

able as a basis for our induction because, as mentioned, recursive calls are made to terms formed by

applying substitutions to subterms of the inputs and not just to subterms of the original input terms.

Therefore, a recursive call from CR-unify is not necessarily made to arguments that are strictly less

than the inputs by the subterm ordering. We instead define an ordering that is contained in the

subterm ordering, but does not increase when certain substitutions are applied to inputs. This order-

ing is shown to decrease with each level of recursion. It is a lexicographic extension of two orderings

on the size of sets T and ,, which are defined below.

Because each E.-unification procedure is assumed to terminate, it is is appropriate for the current . .. .

discussion to think of the unification of two homogeneous terms from the same sub-theory as being a

single computation. Expanding on this idea, it is more difficult to unify a term with many in-

homogeneous subterms than one that is close to being homogenous, even if the more homogeneous

term has a larger actual size. This should help motivate the definition of the first measure of com-

plexity based on the set of distinct terms having strict and significant occurrences in the input terms.

Definition. r(t, s) = {r j r is non-variable & (r-<It or r-<ys)),

The intuition behind the second complexity measure is more difficult, but is related to 7 in the

following sense: If a variable occurs under more than one operator set, where by operator set we . .

mean an equivalence class of F, then any substitution of a non-variable term for the variables will

result in at least one new strict significant occurrence in the resulting term. Therefore, , is the set of

variables occurring under more than one operator set in t and s.

67

., - . • °'. .

22. :. .2. -2222 2 .-2 .,. 22:. .2 22 . 2 ".". .2 : .:: - ... . . . . . . . . . . . .

. .Z-



Definition. Let Plt, s)= (x EV I size(ParSets(x, t) U ParSets(x, s)) > 1)

We will measure the complexity of a particular unification problem by considering the cardinalities

of v and r, and use this measure of complexity to define an ordering on the pairs of terms comprising

the inputs. The ordering will be denoted "<C and is defined as the lexicographic extension of the

cardinalities of a, and r:

Definition. t', s'> -<C t, s> if and only if:

1. size(v(t', s')) < size(r(t, s))

2. and, (size(,(t', s')) = size(v(t, s)) = size(,r(t', s')) < size(,r(t, s))).

We will use the notation -<c to denote a reflexive ordering containing -<p, i.e., Qt', s'>-<C<t, s> if i.nd

only if:

1. <t', s >-.<C<t, s> , . .

2. or, (size(P,(t', s')) = size(Y(t, s)) & size(r(t', s')) = size(r(t, s))).

Note that the t and s can be commuted in the ordering, since r(t, s) r(s, t) and ,(t, s) =,(s, t).

This is consistent with our expectations of a good measure for the complexity of unification since

unification is itself commutative. Lemma 14 states that -<C is a noetherian ordering. This will allow us

to use it as the ordering for an inductive proof.

Lemma 14: The -<c ordering is noetherian.

Proof. It is the lexicographic extension of two instances of the less than total ordering on the natural

numbers. 03

3.4.3 Some Properties of the Ordering

The inductive hypothesis within the proof of termination can only be applied t6 pairs of terms that

are strictly smaller (in this case by the -<C ordering) than the given pair of terms. We will use the

following lemmas to show that recursive calls are made to strictly smaller terms than the input terms.

Lemmas 15 and 16 give independent conditions that are each sufficient for one pair of terms to be

less than another by the -<C ordering. Lemma 15 shows that two non.variable proper significant

subterms of two terms have strictly smaller complexity than the two terms; it will apply in case 5 of

CR-unify where the algorithm recurses over non-variable arguments.

Lemma 15: Let t', and s'.be non.variable proper significant subterms of t or s, then:
Q%' S'> -<r Qt, A> ' """''

68



Proof. Let v,, H, t. s) T, = (t.S), 1,2 v(, s') and T2 T(t', s'). Since I' and s' are subterms of t or

s. all ',arijbles occurrences in t or s' correspond to some occurrence in t or s. Since t' and s are

non-variable terms, all variables in t' or s' will occur under an operator they occurred under in t or s,

sol 2  and :,ze(t, 2 ) S sze(,). It is now sufficient to show 2 CrV, which in this case is independent

of whether or not i'2 z V

All significant subterms of t' or s' are significant in t or s (because t' and s' are themselves significant

in t or s). Therefore. finding one significant subterm of t or s that is not a subterm of t'or s' will prove

7-2CTI and thus size(T"2 ) < s!ze(TI). Specifically, we will show that either I is not a subterm of C and not .-.

a subterm of s' or s is not a subterm of t' and not a subterms of s' and, each being a significant

subterm of itself. satisfies these conditions to prove size(T2 ) <size(,). 2)

Assume. without loss of generality, that t'-<t. We also know that either s'-<t or s'-<s:

1. If s'-.<t, then t is not a subterm of s' and t is not a subterm of t'.

2. If s'-<s, tnen there are three cases:

A. If s'-=t' then s'-.<t. so t is not a subterm of s' and t is not a subterm of f'.

B. If t'-<s then t'-<s, so s is not a subterm of s' and s is not a subterms of t'.

C. If t'-4s' and s'-./t'. then both t and s are not subterms of t' or of s'.

Therefore, Q'. s'> (t. s). [] ..

Lemma 16 gives sufficient conditions for a pair of subterms of two terms to be strictly less than the

two terms even when one of the subterms is a variable. It will apply in case B of CR-variable-unify

where the algorithm recurses over a variable and a non.variable term.

Lemma 16: Let s' be a non-variable proper significant subterm of t or s and let x be a variable such

that size(ParSets(x, t)UParSets(x, s)) > 1, then:
<X , S'> -<C 0t, sX.... "--,:,..

Proof. Let v (t,s), 'r, r(t,s), V2 = V(x, s'), and T2 = 'r(x, s'). Since s' is a subterm of t or s, all

variable occurrences in s' will occur under the same operator sets in either t or s and since x will be in

i,, its new occurrence under (n,} will not place any new variables in v. Therefore, v,2'11 and

size(v2 ) S size(v,). By the same argument as in Lemma 15, 2C'rT,, and thusxs') -<C, s).-

Lemmas 15 and 16 will not be enough to show that the complexity decreases with recursion, since

map-unify applies the accumulated unifier to the next corresponding pair of terms before calling "..-,-.-

;;'- CR-unify. In general, applying a substitution to a term may increase its complexity. Therefore, the --

following set of definitions and lemmas are used to give sufficient conditions on a substitution and

pair of terms such that the substitution will not increase the complexity of the pair of terms.

69

.. .. . ... .. .. . . .. .. -. . - ---." ". . .. 4 - ., -. .--..-



-- 7 77 7, 7-.

Each substitution created directly by the CR-unify procedure is of the form {x -r), where x is a

variable and r is a term. A substitution of this form has a domain of size one or zero and will be called

an elementary substitution. The following definition gives sufficient conditions for forming elementary

substitutions for a pair of terms to assure that the complexity of the terms will not increase with

application of the substitution.

Definition. Let or be an elementary substitution. a is said to be elementary non-increasing fort and,' ,-6

s if and only if it is of one of the following forms:

1. {t 4- s}, where t is a variable not occurring in s, or similarly, the substitution {s 4- t} where s is "'-

a variable not occurring in t.

2. {x 4- r), where x (flr) and (ParSets(x, t)UParSets(x, s))l(ParSets(r, t)UParSets(r, s)) # 0

3. {x -y), where either y is a new variable or

(ParSets(x, t)UParSets(x , s))f(ParSets(y , t)UParSets(y , s)) 0 0

4. {x +- r}, where r is a non-variable homogeneous term such that x I Y'r) and

[r.head]EParSets(x, t)UParSets(x, s) and V y E T"r) either y is a new variable or

[r.head]EParSets(,, t)UParSets(y, s)

5. ft *- r}, where r is a non-variable homogeneous term such that t(7Tr) and
[s.head]EParSets(t, s) and r.head =s.head and Vy E 'r) either y is a new variable or

[r.head]EParSets(y, t)UParSets(y , s). (Similarly for t and s reversed.)

6. {x +- r), where r is a non-variable homogeneous term such that x (itr) and there exists a

significant subterm, r', of either t or s such that r.head =r'.head and

(ParSets(x, t)UParS ets(x , s))fl(ParSets(r', t)UParSets(r', s)) 0 and

[r'.head]jEParSets(x, r') and V y ET(r) either y is a new variable or

[r.head]EParSets(y, t)UParSets(y, s).

Lemma 17 states that each of the conditions in the definition of elementary non-increasing sub- - -

stitutions is sufficient to guarantee that application of such a substitution will not cause the com-

plexity of the terms to increase by the -<r ordering.

Lemma 17: If o is an elementary non-increasing substitution for I and s, then:
<at, as>-K<tQ, sX."- "- ",."..°

Proof. Let=' = =(t,s), T = T(t,s), '2 = ,(at,as), and r= -(ot,as). Consider each case from the

definition of elementary non-increasing substitutions:

1. In this case at = as = s and since t was not in , 1, we know P 2 = P and T2 = 71 which implies

their cardinalities are also pairwise equal.

70

-i ;-. .-. . -. -: . -". • - ." . -.- -,. .- i. - . .:- - -. .--".".- -. -. -" --- -% -: -., - - -'-,,-[. .:- - -,-. ., -

-'. ' .' . .' .' -' - .'-'-. . , -- ,,-' '- . ; ,-'- -.' "-'. .' .' .', .. -.' .°'- ',- ,.' _" ''.' . "' "%_ .'. '. ", _" _ ", .' ''-_,.'- 3 -. ', .', - " .-



Ts.' -.t-'.. C

2. Since r is a subterm of either t or s, v2Cv1 . If v2 = P1, then all occurrences of x must have '-.'

been under operators from a single sub-theory (i.e., size(ParSets(x, t)UParSets(x, s)) = 1).

Furthermore, r must occur under an operator from this set since r and x have some parent

set in common. Therefore, the new occurrences of r in at or as will be significant if and only

if there was a significant occurrence of r in t or s and, thus, r C."
. , ,- .. '

3. If y' is a new variable, then a is simply a variable renaming, so size(P2) = size(v1 ). Otherwise,

there is a conmon parent set of x and y, so size(2)Ssize(pl). In either case, -

size(. 2 ) < size(, 1 ).

4. Let j Efr). If y is a new variable, then all occurrences of y in at or as are in r and, since r is

homogeneous, size(ParSetsO,, t)UParSets(y, s)) = 1. Otherwise, there is a common parent

set of y and x, so y will occur under symbols from more than one sub-theory in at or as '-" "

only if either x or y did in t or s. Therefore, size(u2 ) P size(v1 ). If size(v 2 ) = size(p, ), then x

must have occurred under only one parent set and this set is [r.head]. Therefore, any

occurrences of r in at or as will not be significant and by homogeneity of r, none of its -

subterms will be significant, so size(" 2) s size(T1 ).

5. t occurs under {n) and [s.head], so size(ParSets(t, t)UParSets(t, s))> 1. All other variables

in r are either new, and by homogeneity of r have only one parent set, or already occur-.

under (r.head] in t or s. Therefore, size(s2) <size(p,).

6. x occurs in t or s under both [r'.head] and the set of symbols distinct from [r'.head] under
which r' occurs to make it significant. Therefore, x occurs under more than one set of

symbols in I or s and not at all in at. All other variables in r occur under multiple parent sets

in at or as only if they did in t or s by the argument in case (5), so = = -{X}

We extend the definition of non-increasing to general substitutions as well as elementary ones by -

considering a composition of elementary non-increasing substitutions.

t" Definition. If a a ao...oa and ai is elementary non-increasing for ai.1 ...alt and ai a...Os, i <n, then - .

a is said to be non-increasing for t and s.

Notice that the definition of non-increasing reflects the way in which substitutions are built in

map-unify; one unifier is found and applied to the inputs before next unifier is found. Lemma

* 18 proves the desired property on non-increasing substitutions, i.e., applying a non-increasing sub-

stitution to the given pair of terms does not increase their complexity. It extends the property in

-i Lemma 17 to substitutions that are not elementary.

71

.-- --.-,.,---.-- -., .... -. -.r-:.-.: ::-: :.--.-:.::-------.------.--------.--.---,----..-------------:-----------------:------:--------------:::::..................................................-.-.. ""._.."."'"."- ....- ..-.-.-. -.- --'.-' '- ----- -: :- - ;- -°' ''-



Lemma 16: If a is a non. increasing substitution fort and s, then:

Proof. By induction on n using Lemma 17.0

Lemma 19: Let t'. s be subterms of I or s such that -

(PaSets(t'. t)UParSets(t', s))f(ParSets(s'. t)UParSets(s'. s)) 0. If a is non-increasing for I' and s',

then or is non-increasing for t and s.

Proof. The proof is done by examioing the elementary factors of a to show that each of the con-

ditions that makes it non-increasing for I' and s' corresponds to some conditions that make it non- -

increasing for tand s.

1. {r -s') corresponds to form (2) for t and s.

* 2. { r). where r is a significant subterm of t' or s' is still form (2) for t and s since

ParS ets(x [. I)UParSets(x%. s') C ParSets(.Y, I) U ParSets(x, s) and

* ParSets(r, 1')UParSets(r, s') CParSets(r, I) U ParSets(r, s).

*3. {, - j,) for t'and s' is still form (3) fortI and s

ParSers(x, t')UParSets(t, s') g ParSets(x, I) U ParSefstx, s) and

ParSetsCv, l:)UParSets(v , s') C ParSets~y, t) U ParSets~y, s).

4. fx - r), where r is a homogeneous term is also form (4) for t and s since-

ParS ets(.x, t')UParSels(x, s') C ParSefs(x, t) U ParS ets(x, s) and

V) E Yjr) if [r. head) E (ParSetsU' ,t')UParSets(y ,s')), then

[r.headlC(ParSetsL, ,t)UParSetsby ,s)).

* 5. {t - r), where r is homogeneous in [s.headl is form (6) for tand s. The term s' acts as r' in

form (6) of the definition.

* 6. {x - r), where r is homogeneous and there is an r' as described, is still form (6). since all

significant subterms of t and s' (including 2' and s', themselves) are significant in t or s. AL

0

The following technical definition will be used in our proof of termination to show that non-trivial

recursive calls are made only to pairs of terms that are significant and appear under a common set of -___

symbols in the input terms with accumulated partial unifiers applied. The property is not obvious in

* ~the proof since we are building the corresponding pairs of terms out of substitutions p and Y, not -

*directly from tand s.

Definition. Lett and s be two homogeneous terms in F, the constrained symbols for a sub-theory of

72



E and let p be a substitution that is homogeneous in F. Furthermore, assume either t or s is non-

variable. A substitution, a, is said to be parent preserving for homogeneous t, s, and p, if and only if:

(x EX & x Eg(a)U1o(a)) = FEParSets(ax, at) U ParSets(ax, as),
where X = t)U (()U,5(p).

Informally, X contains the variables from t or s that were not cut off though homogenization, the

new variables from homogenization, and any new variables from p. The intuition is that if one of the
variables occurs in the range variables of a, then it must occur somewhere in at or as, and, further-

more, one of those occurrences must be under F. In addition, if one of the variables, x, occurs in the

domain of a, then the range element ax must occur in at or as under F. It is called the parent . -.

preserving property because the variables in X all occur under F in either t, 9, ptor p , and we want .- .

this parent relationship to be preserved, even when the unifier, a, is only partially formed.

3.4.4 The Proof

Theorem V is the termination theorem for the CR-unify procedure. The proof is by noetherian K 7

induction on the complexity of terms in the calls to CR-unify. The induction step is proved using a

second induction on the number of calls to CR-unify made from a single invocation of map-unify.

The proof is quite long and involved. Before presenting the proof in its entirety, we will give a

short outline of the proof's structure. This should give the reader a feeling for the purpose of each

step in the proof and also act as a check-list for the things that have been proved and the things still

left. The proof is by induction on t and s using the -<e ordering. The proof uses a stronger induction

hypothesis than the property of termination alone. In addition to termination, we prove that returned

substitutions are non-increasing for t and s.

Proof Idea.

1. Basis: Cases 1 and 4 of CR-unify and cases A and C of CR-variable-unify, as invoked in case

2 or 3 of CR-unify. We need to prove that each step terminates and that the returned

substitution is non-increasing for t and s.

2. Inductive step: Case 5 of CR-unify and case B of CR-variable-unify (as called by case 2 or 3

of CR-unify) are the inductive cases, since these two cases require recursive steps. These

cases can be considered together, since both t and f for case 5 are v in case B. In this step

we will show that calls to map-unify terminate. For simplicity, we treat the algorithms as if

they always pick some element of a returned set of unifiers rather than exhaustively trying

each element of the set. Since these sets of unifiers are finite, this simplification does not

affect the soundness of our proof.

73

73 -.. . . . . . . . .. _-A
- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -



We will perform an induction on the variables in the domain of y and p. These variables are

divided into two sets denoted V, and V2' where V2 contains variables representing non-

variable subterms of t or s and V contains variables from the original t or s. The induction

on these variables is divided into two parts, one for V1 and one for V2.

In addition to proving the termination of each step and the non-increasing nature of unifiers,-'.

we will show that a. is parent preserving for t, ., and p. The proof that a is paren. ,reserv-

ing, will depend only on the induction on i, not on the induction on t and s since in the base

cases p, t, and 9 are not defined.

A. This step is for variables in V1.

i) Basis: i = 0, the first variable in the V1.

ii) Inductive step: i>O, the rest of the variables in V1.

Show that this step terminates and any substitution formed is both non-increasing

for t and s and parent preserving for t, 9, and p.

B. This step is for variables in V2.

i) Basis: Since V and 2 are processed in order, this is simply the last case in V1.

ii) Inductive step: For the variables in V2

Show that this step terminates and, again, that any substitution formed is both non- .,. N ,

increasing for t and s and parent preserving for t, i, and p. We break this step

into five cases depending on the value of si, the term formed from p, and ti, the

term formed from y.

Given this rough outline, we now give the termination theorem with complete proof.

Theorem V: For any terms, t and s, CR-unify(t, s) terminates.

* Proof. By induction on t and s using the -<C ordering.

1. Basis: Cases 1 and 4 of CR-unify and cases A and C of CR-variable-unify, as invoked in case

2 or 3 of CR-unify. In each case termination is obvious; We will prove that a returned

substitution, a, is non-increasing for t and s.

A. Ca-e 1: a = {t#-s} is non-increasing because it is either the identity substitution or of

form (1) in the definition of elementary non-increasing.
-. --- - .-

B. Case A: a = {ftrs is of form (1) in the definition of elementary non-increasing.

74

- - - - -- - - - - - - - - - - - - - - - -----.. ,.- - , . -



CCase C The empty set of substitutions is returned, so the properties are vacuously true.

* D Case 4 Again. the empty set of substitutions is returned.

2. Inductive step: Case 5 of CR-uiniy and case B of CR-variable-unify (as called by case 2 or 3

of CR Ln,) are the inductive cases. Let E be the sub-theory of interest and F be the set of
function symbols constrained by E., i.e., F [ s.head].

E,_.CR-unify terminates by the basic assumption on sub-theory unification procedures.

Map-unify# is called with -y. the preserving substitution for t and s, and p, an E.*unifier. Induct

over i, the number of iterations in map-unity, and for each iuse the following notation:

w ECR-unify(t s

* Using this notation. we know a is of the form:

a =4i~i.1 ..O
*The set of domain variables is divided into V1 and V: we will consider each case separately,

1 2

parent preserving for f, 9, and p.

A. v'1EV1 =9l(p)-9i(y): We know by construction of V1 that y,' In this case, each

unifier is of the form wo v4- pij

i) Basis: If i = 0, then no calls to CR-unify have been made and termination is obvious.

The only substitution is a~ t , which is trivially non-increasing and parent preserv-

ing.

ii) Inductive step: D>O.

o= . .o*wO and by the induction hyohsson i, the w,'s are all eeetr

substitutions of the form w,= (v.4-a. 1p v). Therefore, Jo.)Cv.., and, fur-
thermore,Yv(fJ(qa1 ), sot, =O a, 1 V, 1  .0

Also, by construction of V1 we know v E9(p), which implies v' f(p) and thus

vPi(a.,). Therefore, yfila11 pv,).

Since t. does not occur in s. = Oapv., the unifier is w, = (tA-si = (Vi~- Pi;1 1), which is ~1
case A of CR- variable -unify, and obviously a terminating case.

75



W, is homogeneous in F and elementary non-increasing for ai.1t and ai1is because it

is of form (3), (4), or (5) in the definition of elementary non-increasing. There-

fore, a is non-increasing for t and s by Lemma 18.

vi occurs under F in either t or s, and ai is homogeneous in F, so the parent preserv-

ing hypothesis holds. (Note: this is true even if v is t or s as in case B of

CR-variable-unify, since v. must have another occurrence under F in the non.

variable term.)

B. viCV 2  9(y):

i) Basis: The proof for v in V1 proves the base case for V2.

ii) Induction Step:

Since v.Ci(y) we know yvi and thus t is a non-variable such that the head symbol is

not in F. Therefore, ti is a proper significant subterm of a'it or a S.

There are five cases to consider for sr .

a) If s i is a non-variable such that srhead~t head, then the recursive call ter- "'-

minates with the empty set in case 4 of CR-unify.

b) Ifs i is a variable such that siEVrti) & si.C (Preserve(t i, ti)), then the termination

halts with the empty set in case C of CR-variable-unify.

c) If s. is a variable such that s i01ti) then the single substitution returned by

CR-unify(t i, si) is W= {sitti.

Wi is of form (2) for a i.t and a. 1 s in the definition of elementary non-

increasing, and since the induction hypothesis on i implies ai is non-
increasing for t and s, a. = i°ioa1 is non-increasing fort and s.

Termination is immediate in the recursive call since t and si fit case A of

CR-variable-unify as called from case 3 of CR-unify.

To show the parent preserving hypothesis on a i, we will consider two cases:

the variables in the domain of a i and the variables in the range of a

Recall the variables of interest, X, are either variables in t or s with occur-

rences under F, new variables from homogenization, or new variables

from El-unify. " -.

76

i0

. .. . . . . . . . . . . . 76. . . . . ...-...-.--

. ... ~~~........._.-...... .......... .•...... ............... .':>ii'i" '
, .: . . :'-'.-.:'- ... . .. . . . . . . . . .'--". ...- .'.. . .- ,.". .-.-..... .. ".. ... ... .'....,,.. . .... .''> -:.'.': ? .'."-".*



1'1~

Consider x in 9(o,), and show that ax will occur under F in either oit or

ai.*s. This is evident not because of any conditions of x, but because

yvi occurred under F in t or s and therefore oix = i= i.yv will occur
under F in ot or a/s.

Let x be in .(o.) and show that x will occur under F in oit or ais. If

%" x E3(ai) then either x E(a i ) or x El(s). Variables, other than those

in 9(w,1, that are in will occur under F by the induction .

hypothesis on i. Variables in s= a=. 1y i are either in t or s or in J(a

In the first case, if variables occur in t or s and in X, then they must

have occurred under F in either t or s. In the second case, variables

in ai and X will occur under F in a.t or ai.*s by the induction

hypothesis and thus under F in oit or ois.

d) If s is a non-variable such that s..head t..head, then:
Since [ti.headj:F we know [si.head]*F. But si= ai.1pVi, sop maps vito itself

A-.---

or to some other variable. In either case there is some variable, y E9(rF1)

and yEX such that oily = si. Therefore, by the parent preserving ,;.. --.

property on oa.1, Si occurs under F in either ai t or oiS.

Therefore, ti and si are both non-variables significant subterms of oi-lt or

ail.s and by Lemma 15, <ti si>-<C <1 t, ris>.-"

By the inductive hypothesis on i, a- is non-increasing for t and s and thus

<2i.1t, 0ai.s>-<CQt, s> by Lemma 18.

By transitivity, (t, s >-<C(t, s>. I.e., the recursive call is made to strictly

smaller inputs than the original inputs, and we can apply the noetherian

induction hypothesis to prove termination.

By the induction hypothesis on ti and si, if Wi is a returned substitution, then - -

W. is non-increasing for t and si, and by Lemma 19 for t and s since t and -...

s. both occur under F.

The parent preserving property is proved by showing that if xEg(ai)U3(o'1 )

then oax occurs under F in oit or ois. Since a, = WioHi.1, x is either in

J(o'. 1)US(oil) or in f( i)U3((.i). In the first case, the parent preserving -.

property in a. follows directly from the induction hypothesis on a In the

second case, if x is in 9'(w,) then it must be in t, or s,, and if x is in 5(wi)

77

77 . .---'.. -

.. . .° . . : : - + . . . .- : : : : : - : : : . : ..



then it must be in t,, s or it must be a new variable and therefore not be in -

X. We tnerefore need only consider the variables in t, and s,. The vari-

ables in t are either in 3 (-j). and thus in t or s. or they are in 5(a the

variables in s are all in J(c All variables in J(o,1 ) are covered by the

induction hypothesis, and variables in t or s occur in X only if they occur , .-. **. -"

under F, so Lj and hence o are parent preserving.

e) Ifs is a variable such that sElt,) and sE(J(Preserve(, t.), then:

Since s, = is not in t or s but is in t., we know siE,(o.

tCiBls) t,EJ(V,.°op). Therefore, either tEJ(p) or there exists some i,'E(p)
such that tI =a .,,

In either case. the inductive hypothesis applies to give the parent preserving

property on a, and s-(i) occurs under F.

But. s also occurs under [thead]. Therefore. size(ParSets(s, a .t)U .

ParSets(s. a.s)) > 1 and by Lemma 16, <ti, s)-<C<Uit, oi.1s>,

By the same arguments as in case 4, ti s)--< <t, s> and we can use the

inductive hypotheses to show a, = Oo is parent preserving and non- . "

increasing for t and s.

8 . .

,' '-.-

78' %"°.,

0-,O



Chapter Four

Conclusions

'-' This chapter summarizes the main contributions of this thesis and suggests areas for future work. -. , -

We look specifically at possible extensions of CR-unify and some issues and related to the complexity

and efficiency of our approach.

4.1 Contributions

In this thesis we defined a generalization to the equational unification problem which we called

combined unification. The problem is to take a set of equational theories, each of which has a known -

equational unification algorithm, and automatically produce an algorithm for the union of the theories.

The problem solved here, where we restricted ourselves to confined regular theories, was mentioned

as an open problem by [Shostak 841 as a generalization to his work in combining decision

procedures. It is also described as an open problem in [Siekmann 84], where it is called the

combination of theories problem. Ac

The combined unification problem was motivated both by a theoretical interest in learning more

about equational unification and a pragmatic interest in using equational unification in larger systems

such as theorem provers. Many applications of unification involve reasoning about an arbitrary sets

of operators with different set of equational properties. For example, in an automatic theorem prover

the set of needed equational theories will depend on the theorem to be proved. Moreover, given the

difficulty of designing equational unification algorithms, it is not reasonable to assume the algorithm .- ;-

will be designed "on the fly," while proving the theorem. These considerations lead us to conclude

two things: systems based on equational unification must have a large set of built-in theories, and, this

set must be easily extendible so that new theories can be incorporated as they are deemed inter-

esting.

Our approach was to describe a unification algorithm for equational theories that are the union of

theories having known unification algorithms. The main results of this thesis are:

a careful definition of the combined unification problem,

. characterization of a sub-problem of combined unification for which a solution was pos- . .

sible, and for which extensions outside the sub-problem domain are difficult,

79



design of an algorithm for combining equational unification algorithms for confined
regular theories,

proofs of consistency, completeness, and termination for the algorithm,

.a method for a lifting the variable-only case to the case with free symbols and multiple ,.....

instances using our combining algorithm,

-an implementation of the algorithm.

Our definition of the combined unification problem is based on the existence of what we called a

partitioned presentation of the theory. A partitioning on the presentation characterizes the indepen-

dence of its sub-theories, i.e., the theory presented by each of the partitions. This intuitive notion of

independent sub-theories corresponds to having disjoint sets of constrained symbols for each sub-

theory. Independence is essential to the ability to automatically combine unification algorithms as

evidenced by the fact that combining three theories with decidable unification problems, namely

associativity, left distributivity and right distributivity, results in a theory with an undecidable unifica-

tion problem. (See Figure 1-4 for references.) 1,.

The sub-problem of combined unification that we chose to solve was combining confined regular '. -

theories. Both of these properties give sufficient conditions for finding pairs of terms that are not

unifiable. We defined a confined theory to be one in which there are no equations with a variable

equal to a non-variable term. This gave us the invariant that any two equal non-variable terms have

head symbols constrained by the same sub-theory. A regular theory is a theory in which the right and

left side of each equation contains the same set of variables. Together with the restriction to confined

theories, the regularity restriction guarantees that every pair of equal terms has equal sets of sig.

nificant subterms.

We also showed in Section 2.4 that confinement and regularity were not restrictions of con-

venience, but that both our algorithm and a number of simple extensions to it were not correct for

unconfined or non-regular theories. Taken collectively, the examples in Section 2.4 point out a

cu.,lict between the goals of completeness and termination of E-unification procedures. In many

cases it was possible to either prove completeness assuming termination or to prove termination of an

incomplete procedure. *'

The examples in Section 2.4 also serve as counter-examples to the correctness of some existing

E-unification algorithms when more than one instance or free symbols are allowed. The abelian

group unification algorithm and the algorithm for AC unification with either idempotence or unit are

examples of algorithms that are not correct in the more general cases. The ACI and ACU theories

80



lk.- .'- -- ,-...-

have vartable only case algorithms defined in [Livesey 76]. [Fages 83b] shows termination for the r. ,

general cases of ACI and ACU but neither his algorithm nor the algorithms in [Livesey 76] are com-

plete in these cases, in particular. they do not find a unifier when unifying a variable with a non-

variable term containing the variable. For the same reason. the algorithm for abelian group unifica- . _,

tion [Lankford 84] is incomplete in the general cases.

Our algorithm is a combining algorithm for the confined regular theories. It automatically builds

an algorithm for the combined unification problem by dividing the combined problem into a number of < -

variable-only problems, invoking algorithms for the sub-theories on those problems, and recombining

the answers. A homogenizing function is used for the problem division and unification of substitu-

tions used for the recombining. The technique requires no redesign of the sub-theory algorithms, and". --

no theory-specific computation in the generalized algorithm. The restrictions of regularity and con- A, -

finement are implicitly used for correctness, but are never explicitly tested by the algorithm.

The practical significance of our results depend upon the existence of confined regular theories

for which the combined unification problem was previously unsolved, and for which the theories

describe "interesting" properties. The permutative theories are examples of such theories. The

insert operation on the set data type. for example. has the property of right commutativity, a permuta-

tive property that also has known unification algorithm.

An algorithm for unifying permutative axioms is useful in term rewriting system completion

procedures and in resolution, because both of these procedures make use of classical unification and

are limited by the necessity of maintaining termination. The permutative axioms are a class that will

always lead to termination problems, since they can be applied repeatedly. The non-permutative

axioms can often be handled directly by the application, such as resolution or term rewriting, without

loosing termination. It is often the case that equations leading to termination problems in an applica-

tion can be handled by combined unification, while the equations leading to problems in combined

unification can be handled by the application. Referring again to the set example, we note that most

axioms for this data type can be handled in a term rewriting system by placing them in the rules. An. .-

exception is the right commutativity of insert, which would violate properties necessary for termina-

tion. Right commutativity can be handled by our CR-unify algorithm, and is allowed in the unification

algorithm in an equational tern rewriting system. We therefore have a method for proving theorems

about sets of terms or sets of sets by incorporating the combining unification algorithm with right

commutative unification into an equational term rewriting system.

Another class of theories we have discussed are those theories presented by only ground equa-

817

.. ~~~~~~-- ------------------------.-- ..*....,............-..... . ... ..
- - - - - - - - - - - - - - - - - - - - - - - - --. "



-. ,
°  * II MII *0* JI-r. r.-r rr',- C - u- .-

tions. These theories have an automatically generated unification algorithm through narrowing

[Hullot 801, and are also confined and regular. While the case with free symbols and multiple in-

stance case are solved by the narrowing process, our algorithm provides a method for combining

these narrowing unification algorithms with arbitrary other algorithms for confined regular theories.

A proof of total correctness for the CR-unify algorithm was given in Chapter 3. The proof was

presented in three separate theorems: Theorem III shows consistency, Theorem IV completeness,

and Theorem V termination. The consistency and termination properties are proved for all theories,

while completeness is proved for the regular confined theories. The consistency and completeness

proofs assume termination, and therefore constitute a partial completeness argument. Combined

with the termination proof this shows total correctness. The termination proof w2, '-ased on Fages's ..

proof of termination for AC-unification. However, the extension was non-trivial, particularly because

case B of CR-unify is a failure case in the AC theory, whereas case B is a recursive case in CR-unify to

handle theories presented by ground equations.

A consequence of our method and the proofs is that any variable-only case algorithm for an . ..

equational theory E can be automatically lifted to both the multiple instance case and case with free

symbols. The importance of this is demonstrated by considering an example. A unification algorithm

for the AC theory was originally described by Stickel in 1975, and although the procedure was pur-

ported to solve the general cases for AC, termination in the general case was unproven until 1983,

when it was solved by Fages. The AC theory is one example of a confined and regular theory; Fages's

generalization of Stickel's algorithm is a special case of our CR-unify just as his termination proof is a

--. special case of our termination proof for CR-urify. The unification problem with free symbols is also

immediately solved by our algorithm for any theory with a variable-only case algorithm, because the

unconstrained symbols are handled by the empty theory unification algorithm.

The ability to go directly from a variable-only case solution to the more general solutions also give -

us some bounds on the number of unifiers in certain theories. As a corollary to our proof of total l

correctness, termination in the variable-only case of a confined and regular theory implies termination .

in both the multiple instance case and the case with free symbols of this theory. This in turn implies

the existence of a finite complete set of unifiers in these more general cases. Conversely, if either the '."' "

case with free symbols or the multiple instance cabe is known to be infinite for a given theory, then the __ _ "

variable-only case must also be infinite.

The CR-unify algorithm has been implemented as part a general effoit to extend the REVE term ..- °.

rewriting system generator [Lescanne 83, Forgaard 84b] to equational term rewriting systems

82

S- . . .. . .. . . . . . . . . . .

. . . . . . . . . . . . .- *- - - -- - - - - - - - - - - - - - - - - - -



[Kirchner 84b]. The implementation supports the generalized unification algorithm and allows for - -

simple modular extension to new sub-theories as their unification algorithms are implemented. In the

t- current version, the unification algorithms for the AC and empty theories have been implemented. .. -

The implementation of the REVE system, including our unification algorithm, was done in CLU [Liskov

81]. .

For efficiency reasons, the implementation differs from the description given in this thesis. Each "--..

E-unification procedure is implemented to perform unification in a single equational theory, making

no assumptions about the properties of the operators in the subterms, but recursively calling the

top-level general unification procedure to unify subterms rather than returning homogeneous sub-

stitutions and combining them through unification of substitutions. This eliminates the overhead of

forming the homogeneous terms. The sets of substitutions that appear in both CR-unify and L

map-unify are replaced in the implementation with CLU iterators. This simplifies the code and may

allow for combining non-terminating unification procedures, such as that for the associative theory

[Plotkin 72]. Finally, as in Fages's implementation of AC-unification, the order of recursion imposed -

in map-unify by forming V1 and V2 is not preserved. I.e., variable elements in %'(y) are not necessarily

unified first. The assumption on the order of recursion is made only to simplify the termination proof.

4.2 Future Work

The work in this thesis has suggest some areas for further research. We will discuss, on a ...

pragmatic level, some techniques for improving the efficiency of our algorithm. We also consider the

problem of weakening the restrictions on the equational theories allowed in the combining algorithm, -

and present directions for further work in this area.

4.2.1 Efficiency Issues

The feasibility of using E-unification in applications will depend in part on the ability to find

reasonably efficient algorithms for performing the unification. Although the combined unification

problems are inherently hard for many interesting theories, there are a number of optimizations that

will improve the running time in practice. * '

One of these optimizations comes from the difference between U-Homog and Homog, defined in -

this thesis. CR-unify is still correct if U-Homog or other homogenizing functions are used in place of

Homog in the procedure.- There is a trade-off between the efficiency of the homogenizing function ' ',

and the number of unifiers of the homogenized terms, since terms with multiple occurrences of

83

- . -. . . .. . . ...- --. ".-- ... .



- 7 7 7 ,r ", . .. .

variables have fewer unifiers than terms in which each variable is unique. The best homogenizing -

function may be one that performs differently depending on the theory of the head symbols.

The order of recursive calls is also very important to the running time of combined unification. In

practice it is best to perform the simplest recursive calls first, especially when they will lead to failure. .

Ordering of recursive calls can be done partially on the basis of the kind of terms to be unified (i.e.,

variable versus non-variable) and partially on the basis of the relative difficulty of performing a unifica-

tion in the different theories [Fages 85]. .

Perhaps the most interesting class of optimizations would involve weakening our strict boundaries

- between sub-theory unification algorithms. There are sufficient conditions on terms for non-

unifiability that can be checked very quickly, e.g.. clash of head symbols. Sometimes, a sub-theory -

unification algorithm can make use of this information during its processing and thereby never

*- produce unifiers that would require two obviously non-unifiable terms to be unified. A clash between

symbols from differe. sub-theories could be detected in the current structure of the algorithm, but

more general kinds of checks for non-unifiability are specific to a theory and would therefore requires

sharing information between unification algorithms. Our current implementation does not make use

- of this kind of information because the emphasis was on correctness and modularity of the program

'- rather than efficiency.

A measure of complexity that exists for unification problems, and is also related to the efficiency in

practice. is minimality of a solution. An algorithm that is totally correct but produces many non-

minimal unifiers will be too inefficient for some applications. Minimality is probably too expensive to

require of unification algorithms, since in some theories this would require an exponential filtering

process. However, non-minimal unifiers affect the execution time of both the algorithm and its ap.

plications and thus one measure of a good algorithm should be that it produces few non-minimal -

unifiers. A related open problem is to find a minimal combining unification algorithm that avoids ...

exponential filtering.

Efforts to gain significant improvements in efficiency through parallel processing are limited by

some lower bounds in that area. First, note that E.unification problems for which the best algorithm is

exponential will have at best exponential parallel algorithms, since we have only a polynomial number J

of processors. For theories in which polynomial unification algorithms exist, improvements through

parallel processing may be possible. However, the fact that empty theory unification is inherently

sequential [Dwork 84] is not promising.

84



4.2.2 Removing Restrictions on the Theories

A challenging area of research that is not addressed in this thesis is the problem of combining

theories in which constrained symbols are not disjoint. Some of the negative results on the

decidability of unification problems indicate the difficulty of this problem. The undecidability results in

this area have been based on the undecidability of Hilbert's 10 th problem, solving Diophantine equa-

tions over the integers, which was shown undecidable by MatiyaseviC [Davis 73]. [Arnborg 85] and

[Szabo 78] investigate combinations of theories with non-disjoint function symbols by studying the

lattice of sub-theories that are consistent with Peano arithmetic. [Szabo 78] shows the undecidability

of the associative theory with two sided distributivity, AD, while [Arnborg 85] shows the undecidability

of the associative theory with one-sided distributivity and a right and left identity element, AD U or

ADrU. In both cases it was also shown that any theory consistent .vith Peano arithmetic and contain-

ing the AD or ADlU theory, respectively, also has an undecidable unification problem.

The CR-unify described in this thesis cannot handle non-terminating procedures for enumerating

unifiers. For the sake of notational convenience, the CR-unify invokes a sub-theory algorithm which '

returns a complete set of unifiers, although processing of unifiers could be done one at a time. It may

be possible to get a combining algorithm for non-terminating unification procedures by processing on

sub-theory unifier before the others are generated. The interesting problem here is to show that the

resulting procedure is a complete generating procedure for the combined theory.

An obvious problem that is left open in this thesis is combining unification algorithms when the

theories may be either unconfined or non-regular. The problems that arise in trying to extend

CR-unify were characterized by the examples in Section 2.4. We found, in general, that it was not

hard to guarantee consistency, but that the properties of termination and completeness seem to

conflict. It was possible to get a provably complete procedure if one assumed termination, while in

actuality the procedure would loop in a trivial manner before any unifiers were generated. Alter-

natively, a terminating algorithm could be achieved, but it was found that the algorithm was incom-

plete on some non-trivial examples.

Before our algorithm can be extended to unconfined or non-regular theories, further theoretical

work must be done. The experience gained in this work shows that the problem of generalizing

unification procedures is not trivial, that seemingly obvious approaches are not always correct, and,

therefore, that algorithms in this field require detailed descriptions and careful proofs of consistency,

completeness, and termination.

85

='~~..-2. .......... ,-.,.............' ..... '-.-- -- -- - ., .--. -, ,...,,,* , ..- . - .- ,,..,.¢. ., ,,



Appendix A

Protection of Varables in CR-unify

A technical issue that we have avoided discussing in detail until now is the generation and protec-

tion of new variables in CR-unify. A unification algorithm is often used in a larger system, and that

system may have variables of its own, and it is important that any new variables generated by CR-unify . -

do not coincide with those existing externally. This problem could be handled by simply renaming

variables after performing unification, but the more general problem comes up within the CR-unify

algorithm because of the recursion. It is important to all three correctness properties, i.e., consis-

tency, completeness and termination, that new variables generated on recursive calls do not coincide - .-.

with those existing in subterms not involved in the recursion. For example, if two new variables

appear together and both use the same name, the resulting unifier may be less general than intended

substitution. In particular, the property of idempotence of unifiers, used in the proofs, depends on the

disjointness of domain and range variables. This disjointness can only be guaranteed if the variables

in the domain of one factor of a substitution can be protected from appearing in the range of another

factor. The parent preserving property of the termination proof also depends on the protectiveness of

recursive calls to CR-unify.

In the implementation the protection problem corresponds to the problem of generating globally

unique identifiers from within any local procedure environment. The solution in the implementation is

to pass an object for generating unique identifiers to each unification procedure and to guarantee a

priori that all variables in the input are disjoint from any variables that may be generated. We do this .

by picking a special prefix for generated variables and concatenating a unique integer whenever a

new variable is needed. In the formal context, it is more convenient to pass the set of variables to be

protected than to pass a function for generating id ntifiers, although the two approaches are effec-

tively the same.

We begin by imposing a total order on the universe of variables, V. If V is any set of variaules, ,

Next(V) denotes the smallest variable in V, as defined by the imposed ordering. The homogenizing

function, Homog, is then modified to incorporate the protected set of variables. The following

" . " modification to the definition of Homog will legitimize calling Homog a function, since it will now be

m athem atically w ell-defined. The definition given here replaces the earlier one. ," -i "

86
.

.. . .



Definition. Let F be a set of function symbols. W be a finite set of variables, and t be a term such that ,-

iI) C_ 'N. Ho,,og(t. F. W) is defined as follows:

1. If I is a variable, then Homog(t, F,) = t. .

2. If t = .f(ti ..... t n ) and f E F, then ,,.-,-..
. . . . .F,, where W and for i>1,

Homoglt, F, W) = f(Homog(t, F, WI) ....Homogltn  Wn))w

W1 = W.- U i Homog(, . w ,)).

3. If t = flt. ... tn) and f ( F, then Homog(t, F, W) = Next(V-W).

Figures 4.1 and 4-2 show the CR-unify and map-unify procedures, respectively. For the sake of

consistency between Figure 2-3 and 4-1, we will abuse our notation slightly. The shorthand form of

the homogenizing function, T, was used in the less formal description of CR-unify in Figure 2-3.

Because it does not allow for specification of the the set of protected variables, we will use the

longhand form, Homog. and use F and 9 as identifiers in the code; they represent the same values as

in Figure 2-3.

For simplicity we assume the set of protected variables, W, contains all variables in the other

inputs arguments. I.e., 'ilt)UlWs) C W in calls to the CR-unity procedure, t(s)U(v) g W in

CR-variable-unify, and ) CW in map-unify. ".."-

87



CR-unity p proc (t, s: term, W:var...set) returns (subst-set)

case .. --

is..yariable(t) and is....ariable(s) % case 1
retu rn({{t'-s)1)

is..yariable(t) and -is..variable(s) % case 2 ~,

retu rn(CR -variable -unity(t, s, W)) -
is..yariable(s) and -is-v.ariable(t) % case 3

retu rn(CR-variable-unif y(s, t, W))

t.head s.head % case 4

return (0)
t.head =s.head % case 5

Homog(t, t.head, W)

&=Homog(s, t.head, W(JfU)).
=Preserve(t, 1) U Preserve(s, &

P:= E [hdJuf~y(t, 9, WlIUtU'R))

2= U map-undfy(p, 'y, WUfi)Ufl&U5(P))
pEP

retu rn(Y.lU~)
end

end
end CR-unify

CR -va riable-unify p proc (vi variable, s: term, W:var...set) retu rns (subst-set)

9:= Homog(s, shead, W)
I:= Preserve(s,)
case

V (flS) % %case A
return ({(v +- s)))

v E ~s) y C5(j)% case B

P: Efs headj unity (v, 9, WU 1tj))
T= U map-unity(p,y, WUTi^&)U5(p))

pEP
retu rn(YlVU. )

v E i's) & vEi() % case C
retu rn~ff)

end
end CR-variable-unity

Figure 4-1: A Careful Description of the CR-unity Procedure -

88

*-- -- -- --- -- -- --- -- ---- - Iii



map-unify = proc (Ep' p2:subst, W:var.set) returns(substset)

( q0. -2]

V : =90 9),2,)

i:= 

forj = 1to 2 do

for v in V. do
i:= i +1

Yi= {Wi 1 1 I lE "i1 & = WUS(o 1-1)

& WiECR-unify(ai.1r1v, oi.1 P2 ,W )

end

retu rn(.)

end map-unify

Figure 4-2: A Careful Description of the map-unify Procedure

We will use an inductive argument to show the protectiveness of CR-unify. Recall that the con-

ditions comprising protectiveness of a set I of unifiers of t and s are:

rEX ()CV & W-Vfi(o) = o
& (a)flS(a) = 0 "' ,"-,

where V = "(t)UT(s). The protectiveness of each step depends on W containing all variables in the

input arguments, so it is important that recursive calls maintain this convention.

The applications of Homog to t and s in both CR-unify and CR-variable-unify of Figure 4-1 meet

this requirement, since TY)Ut1s)CW. Calls to the sub-theory unification algorithm case 5 and case B

explicitly add any new variables from t and . to W. The only non-trivial case is the invocation of

map-unify, and here we know by construction of y that all variables in 9(y)Ui(y) are in either Tlt),

T"(s), T"(), or ti(). Furthermore, by protectiveness of the sub-theory unification algorithm,

?p~Ti)UTf(). By explicitly adding 5(p) as well as YI) and fl^) to W, we are guaranteed to cover all

variables in both y and p. Note that the protected variables in calls to one invocation of map-unify do
"V.

not contain variables generated from a previous invocation of map-unify.

Map-unify also maintains the convention of having all variables from the arguments in the ".-.

protected set, since it explicitly places any new variables from one invocation into the protected set

for the next invocation.

89



I. 6 A.

Given this assumption on W, we can see that CR-unify produces a protective set of unifiers.%%

* Cases 1. 2, 3. 4. A. and C are obvious. In cases 5 and B, if a is a returned unifier, then U(o')Cflt)Ufljs)

by the explicit restriction of 1. The two properties on the range of a, (w-v)flJ(O) = 0 and

um(nfi(a) = 0 follow because a is the composition of substitutions formed by recursive calls to

CR-unify, and in each case W is a subset of the protected set in the recursive call.

7-

_31

90--

. .... 

..

Lew



7 777- 7- It TV L7 7% 'V _ .V. .-

Appendix B
il °' "

Glossary of Terms

4-assignment a mapping from terms to elements of algebra A.

" algebra A set of elements and a set of function on the elements.

carrier The set of elements in an algebra.

clash In classical unification, this is the problem that occurs when trying to unify terms
with different head symbols.

congruence relation
An equivalence relation closed under the equality rule, tl-.S1 ..... tn S .
' .-.t -f(s i .... sn) for allf EF of arity n.

complete set of unifiers
A generating set for the set of all unifiers.

completeness The property on unification algorithms that guarantees a complete set of unifiers
is always found.

confined A set of equations is confined if is contains no equations with a variable equal to a
non-variable term.

consistency The property on unification algorithms that guarantees all returned substitutions .-. --

are unifiers. P,

constants Function symbols of arity 0, denoted a, b, c, d, 0, or 1.

corresponding pairThe pair of Lrms with which CR-unify is invoked from within map-unify. The pair

is formed by picking a variable in the domain of the two substitutions, applying
each substitution to the variable, and then applying any previously accumulated
substitution.

cycle The problem that occurs in classical unification when unifying a variable with a
term containing that variable. More generally in equational unification, this hap-
pens whenever the unification is an infinite term. 4

domain The domain of a substitution, denoted 9(a) is the set of all variables mapped to
something other than themselves, i~e., 9(a) = { v v ) v.

elementary substitution
Substitution with a domain of size 1 or 0.

91
.° . .- .. . . .- '



elementary non-increasing
A fairly technical definition giving sufficient conditions on elementary substitu-
tions such that the complexity (-<C) of two terms is not increased by applying the
substitution.

. ground terms The set of terms formable from only function symbols, i.e., no variables.

-, head The leftmost symbol of a term. -.

* homogeneous A term is homogeneous with respect to a set of function symbols is the term

contains no function symbols outside that set. A substitution is homogeneous if -
all terms in its range are homogeneous with respect some set of function symbols. : :
(See Homog, U-Homog, and U-HomogMap.) .

Homog The homogenizing operation on terms, denoted (t), that replaces subterms with
new variables. .

instance A term t is an instance of s is t as for some substitution a. Similarly, a substitu-
tion, q) is an instance of 2 if and only if there exists ( 3 such that = q 3 op 2 . - -

is said to be more general than in this case, and the partial order on substitu- .

tions is denoted q1 : 91.

- instantiation A rule of inference used in equational logic From t =s deduce at =as.•E E

map-unify A procedure for finding unifiers of substitutions,

match A substitution mapping a term to an instance of itself.

.'*. minimal complete set of unifiers ...-.
An set of substitutions that generates all unifiers and contains no redundant sub-
stitutions.

minimal partition The smallest partition on a presentation of a theory that preserves disjointness of
operators.

minimality A property on unification algorithms that guarantees no returned substitution is an
instance of another returned substitution.

more general modulo E
A partial order on substitutions, denoted v, that is similar to :5 except = is used

% in place of term equality. E E

most general unifier
In classical unification this is the unique unifier of which all other unifiers are -

instances. In E-unification there may be a set of most general unifiers.

non-confining An equation is non-confining if it is of the form v = t or t = v, where t a non-variable -

term.

non-increasing A substitution formed of only elementary non-increasing factors.

92

------------------- - ..-- . . ... .. . .. .. .... - ..-. . ... ... .... .- i-'--



occurrence A of integers, o, denoting node within a term. For example, f(tVi.... tn)/i.o = t/,
where t/o denotes the term at occurrence o in t.

parent A parent of t in s is an operator in s having t as an argument. The set of all parents
of t in s is written Parents(t,s).

parent set The equivalence of a parent. The set of all parents sets of t in s is written
ParSets(t,s).

partitioned presentation

A set of sets of axioms with pairwise disjoint operators.

presentation A set of axioms for an equational theory.

preserving substitution
The substitution mapping fto t, which is just the match of fby t.

proper occurrence An occurrence other than the empty occurrence, C.

protection A property on unification algorithms limiting the variables that can appear in an . -

answer, i.e., all answers must be protective unifiers.

protective unifier A unifier, a, of t and s is protective if is domain and range contain disjoint sets of
variables, the domain is a subset of the variables in t and s, and any variables in
the range of a than do not occur in t or s are new variables.

quotient algebra The algebra formet from another algebra by taking equivalence classes of ele-
ments of the second as elements of the first. For example, f/ = denotes the term
algebra modulo an equational theory E*. E

• range The range of a substitution is the set of terms to which some element of the
domain is mapped.

regular An equation is regular if the right and left sides contain identical sets of variables.
A set of equations is regular if every element is regular.

"* relevant function symbols
The set of function symbols constrained by a sub-theory. In nost cases this is the
set of function symbols in a presentation of the theory given in ir; in the case of
the empty theory, this is the set of symbols that do not apprar in any axioms.

significant occurrence
An occurrence, o is significant if the occurrence just above it does not have the
same operator as o, where same means =. All variable occurrences as well as the W.

empty occurrence are significant.

significant subterm A subterm is significant if it occurs at a significant occurrence.

strict occurrence A non'variable occurrence.

93



7 D-163 112 GENERLIZED PPROCH TO EUTIONL 
UNIFICTION(U) 

22
MASSACHUSETTS INST OF TECH CANDRIDGE LAS FOR COMPUTER
SCIENCE K A VELICK AUG 85 MIT/LCS/TR-344

UNCLASSIFIED N08814-83-K-8125 F/G 12/1 NLm00 h~hE



111 10 ILL=-

NAIOA BRAUO SAD-D

liii,-OP RESLUIO TETCM

1*1 -



strictly consistent A theory is strictly consistent if and only if -= is not in the theory. A theory that
is not strictly consistent contains all equation. . -.

strict theory A theory is strict if for any set of unificands having a unifier in common, the
transitive closure of -<i is a strict ordering on the set.

strongly complete theory
A theory is strongly complete if for any pair of terms, a variable, x, and non-
variable. r. if % and t are unifiable then there is complete set of unifiers such that - _

every substitution in the set has a domain of {x).

sub-theory If E is an element of ir. then E is a sub-theory of E.

substitution A mapping from variables to terms extended to a mapping from terms to terms.

subterm ordering Denoted 1-<s, this partial ordering on terms holds when t is a subterm of s.

theory A set of equations that is closed under rules of inference.

U-Homog A homogenizing function on terms that replaces subterms with elements of U
rather than new variables as in Homog. 7 is used when the value of F is clear from -.
context.

U-HomogMap A homogenizing function on substitutions, denoted ;, that homogenizes each
term in the range and maps some elements of U to others.

unifier In the classical case, a substitution, a. is a unifier of two terms I and s if and only if iiv
ot = as. In the more general equational unification, term equality if replace by
equality in an equational theory.

,..5. .

CR-unify An algorithm for unifying in confined regular theories..--

uninterpreted Function symbols that do not appear in a presentation of a theory and unin-
terpreted.

universal E-preserving substitution
The substitution, IA, that maps the homogeneous form of a term under U-Homog to
a term within E of the original.

variables The universe of variables is denoted V while individual variables are denoted by
either u, v, w, x, y, or z.

4-

94

°o • -. %"

: . -, - -.,

-.. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

- S ,- S--..-.....



--- ,1

Appendix C

Special Symbols

A An algebra.

The noetherian ordering on inputs to CR-unify used to show termination. is
the lexicographic extension of the cardinalities of P and r.

. The domain of a substitution, i.e., J(a) = (v Io 4v.

< Used to denote the ordering on substitutions, 9p1 < if and only if there exists q3
such that 3(p =

The congruence relation on terms defined by an equational theory of E. Also used
to denote the congruence relation extended to substitutions.

E* The equational theory presented by the set of axioms, E. I.e., E denotes any set of

equations whereas E* denotes a closed set.

Eq MA The set of equations valid in all models of the class k.

F The universe of function symbols, i.e., the signature of the entire theory E*.

(t) The set of function symbols in t

A substitution, usually used to denote the preserving substitution of a term and its
homogeneous form or the combined preserving substitution for a pair of terms.

G The set of all ground terms formable from F. - ..

The empty substitution.

t.head The function symbol at the head (or root) of t.

e The empty occurrence, i.e., the empty string. For any term t/e =t.

.-3. The set of all variables in the range of a substitution, i.e., 5(a)= {v vET(t) for -..

-tE A(u)).

An ordering on pairs of terms defined in [Kirchner 85] that is used in defining a
strict equational theory. One pair is less than another if a term in the first pair is a
variable, and that variable occurs in a non-variahle term in the second pair.

A(E) The set of all models of E.

96

.'.-,...'.,.'.,,',,,,,,',~~~~~~~~. . . ...... ................. -... .... ,.,.,,*....... .... ,,...,.,,.,,,"-,



• - - .2.3. . ... . .- .....

The universal E-preserving substitution.

P An A-assignment, or interpretation, mapping terms to objects in an algebra. .,

n The null operator, used to denote the parent of the a term in itself.

(t, s) The set of variables in t and s that occur under more than one equivalence class €-.- . *

of parent operators. The cardinality of v is denoted by s,. (, is in no way related to C.-'.--
the use of , as an .A-assignment.)

U The set of special variables used to denoted congruence classes of terms.

*0(t) The set of occurrences in t

A substitution, used in this thesis to denote factors of a unifier as it is being built in
CR-unify.

Parents(t, s) The set of parent operators of t in s.

ParSets(t, s) The equivalence classes of parent operator of t in s.

The partitioned presentation, usually assumed to present the theory E0.

The equivalence relation on function symbols defined by the partitioned presen-

tation, w.

A substitution.

p A substitution, used in this thesis to denote a sub-theory unifier of two
homogeneous terms. .

A substitution, used the CR-unify to denote a unifier or, when subscripted, a par-
tially formed unifier.

The terms in the range of a substitution, i.e., (v) = {avlvES()). - -

S The set of all possible substitutions.

* (t, s) The set of significant subterms of t and s. The cardinality of i is denoted by ,.

T = T(F, V) The set of all terms formable from F and V.

JE = The quotient algebra of the term algebra modulo and equation theory congruence
E relation on terms.

V The universe of variables.

t~t) The set of variables in t.

Restricts the domain of a substitution: oIV = {v-Uv I vEV). Also used to restrict ....

sets of substitutions: X1v = {vro v lEX).

96

%1
A- . -•- - -. .--A- A-. - - -o '2 ° ... *: . : -o -.-



Z-

. 9-loq 2  Functional composition. For substitutions q) and '2' Flt Y = ,(T2t) for any :, ,A

term t.

t nead The function symbols at the head of a term t.

Validity.

UE Set of all E-unifiers of two terms. ,.,,,'

CSUE Complete set of unifiers.

fLCSUE Minimal and complete set of unifiers

[1] The equivalence class of function symbols (defined by w) that containsf.

1' The homogeneous form of t. Homog(t, [t.head]). Homogenization is done with
respect to the set of relevant function symbols for some sub-theory of EO such
that the head of t is in the set. I.e., it is the maximum homogeneous term at the top
of t where new variables take the place of subterms outside the homogeneous
part.

The homogeneous form of t which is similar to t except subterms are replaced , .

with elements of the special set U rather than new variables.

"-<: The subterm ordering on terms. Ie., t-<s if and only if t is a subterm of s. t-<s may
be used if t is a proper subterm of s.

"<.1' The significant subterm ordering, i.e., t<js if and only if t is a subterm of s and t is
significant in s. If t is also know to be proper in s, t-<ts may be used.

,- .' - .

.2: 97 .. ...... . . . . . . . . . . .,

. . . . S * * . . . . . .



- . *.. '..* *

References

[Arnborg 85] A. Arnborg and E. Tidbn, "Unification Problems with One-Sided Distributivity," Proc. of [
the Conference on Rewriting Techniques and Applications, Dijon, France, 1985, Springer- ,.:' -
Verlag, 1985. to appear

[Baxter 73] L. D. Baxter, "An Efficient Unification Algorithm," Technical Report CS-73-23, Dept. of
Applied Analysis and Computer Science, Univ. of Waterloo, Waterloo, Ontario, 1973.

[Benanav 85] D. Benanav, D. Kapur, and P. Narendran, "Complexity of Matching Problems," Proc.
of the Conference on Rewriting Techniques and Applications, Dijon, France, 1985, Springer- ,
Verlag, 1985. to appear

[Birkhoff 35] G. Birkhoff, "On the Structure of Abstract Algebras," Proc. Cambridge Phil. Soc., Vol.
31,1935, pp. 433-454. .. -

[Chandra 84] A. Chandra and P. Kanellakis, private communication, 1984.

[Choppy 851 C. Choppy and C. Johnen, "Retrireve: Proving Petri Net Properties with Rewriting AL
Systems," Proc. of the Conference on Rewriting Techniques and Applications, Dijon, France,
1985, Springer-Verlag, 1985. to appear

[Clocksin 81] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag Berlin .771
Heidelberg New York, 1981. ,_....

[Cohn 65] P.M. Cohn, Universal Algebra, Harper & Row, 1965. -- .-

[Corbin 83] J. Corbin and M. Bidoit, "A Rehabilitation of Robinson's Unification Algorithm,"'r'"t "i
R. E. A. Mason (Ed.), Proc. 9th World Computer Congress, IFIP '83, North-Holland, September
1983, pp. 909-914.

[Cosmadakis 85] S. Cosmadakis and P. Kanellakis, "Two Applications of Equational Theories to
Data Base Theory," Proc. of the Conference on Rewriting Techniques and Applications, Dijon,
France, 1985, Springer-Verlag, 1985. to appear " .

[Davis 73] M. Davis, "Hilbert's Tenth Problem is Unsolvable," American Mathematical Monthly
80(3):233-269, 1973. -'' -

[Dershowitz 83a] N. Dershowitz, "Computing with Rewrite Systems," Technical Report
ATR-83(8478)-1, Aerospace Corp., El Segundo, CA, January 1983,

,, .. -• ,.- - .

[Dershowitz 83b] N. Dershowitz, N. A. Josephson, J. Hsiang, and D. Plaisted, "Associative-
Commutative Rewriting," 8th IJCAI, Karlsruhe, West Germany, 1983. .. ..-

[Dwork 84] C. Dwork, P. C. Kanellakis, and J. C. Mitchell, "On the Sequential Nature of Unification," .
Journal of Logic Programming 1, pp. 35-50, June 1984.

[Fages 83a] F. Fages and G. Huet, "Complete Sets of Unifiers and Matchers in Equational -
Theories," Trees in Algebra and Programming, CAAP '83, Proceedings of the 8th Colloquium, -'.:.

L'Aquila, Italy, Lecture Notes in Computer Science, Springer-Verlag, March 1983, pp. 205-220.

[Fages 83b] F. Fages, "Formes Canoniques dans les Algebres Booleennes, et Application a la
Demonstration Automatique en Logique de Premier Ordre," Ph.D. Thesis, L'Universite Pierre -

et Marie Curie, Paris VI, June 1983. J-.

[Fages 841 F. Fages, "Associative-Commutative Unification," Proc. 7th CADE, Napa Valley,
Springer-Verlag, 1984, pp. 194-208.

[Fages 85] F. Fages, private communication, 1985.

9:8:::,:::

- ..-.-- - - - -



[Fay 79] M. Fay, "First-order Unification in an Equational Theory," Proc. 4th Workshop on
Automated Deduction, Austin, TX, February 1979, pp. 161-167. :" "'

[Filgueiras 82] M. Filgueiras, "A Prolog Interpreter Working with Infinite Terms," Technical Report
FCT/UNL - 20/82, Faculdade de Ciencias e Tecnologia, November 1982. Quinta da Torre,
2825 Monte da Caparica, Portugal

[Forgaard 84a] R. Forgaard and J. V. Guttag, "REVE: A Term Rewriting System Generator with
Failure-Resistant Knuth-Bendix," Proc. of an NSF Workshop on the Rewrite Rule Laboratory,
Sept. 6-9, 1983, General Electric Corporate Research and Development Report No.
84GEN008, Schenectady, NY, April 1984, pp. 5-31.

[Forgaard 84b] R. Forgaard, "A Program for Generating and Analyzing Term Rewriting Systems,"
Master's Thesis, MIT Lab. for Computer Science, 1984.

[Fribourg 84] L. Fribourg, "Oriented Equational Clauses as a Programming Language," ICALP,
1984.

[Garey 791 M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., San Francisco, 1979.

[Goguen 791 J. A. Goguen and J. J. Tardo, "An Introduction to OBJ: A Language for Writing and
Testing Formal Algebraic Program Specifications," Proc. Specification of Reliable Software,
Institute of Electrical and Electronics Engineers, April 1979, pp. 170-189.

[Goguen 80] J. A. Goguen, "How to Prove Algebraic Inductive Hypotheses Without Induction, With '- .
Applications to the Correctness of Data Type Implementation," Lecture Notes in Computer
Science, Vol. 87: Proc. 5th Conf. on Automated Deduction, Les Arcs, France, Springer-Verlag,
New York, July 1980, pp. 356-373.

[Gratzer 78] G. Gr itzer, Universal Algebra, Springer-Verlag, 1969, 1978.

[Guttag 83] J. V. Guttag and J. J. Horning, "Preliminary Report on The Larch Shared Language,"
Technical Report TR-307, MIT Lab. for Computer Science, October 1983.

[Hsiang 82] J. Hsiang, "Topics in Automated Theorem Proving and Program Generation," Ph.D. ...

Thesis, Univ. of Illinois, Urbana-Champaign, November 1982. . "-.'.

[Huet 80a] G. Huet and D. C. Oppen, "Equations and Rewrite Rules: A Survey," in R. Book (Ed.),
Formal Language Theory: Perspectives and Open Problems, Academic Press, New York, - -.

1980, pp. 349-405.

[Huet 80b] G. Huet, "Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems," Journal of the ACM 27(4):797-821, October 1980.

[Huet 82] G. Huet and J. M. Hullot, "Proofs by Induction in Equational Theories with Constructors,"
Journal of the ACM 25, pp. 239-266,1982.

[Hullot 80] J. M. Hullot, "Canonical Forms and Unification," Lecture Notes in Computer Science, ...-

Vol. 87: Proc. 5th Conf. on Automated Deduction, Les Arcs, France, Springer-Verlag, New
York, July 1980, pp. 318-334.

[Jeanrond 80] J. Jeanrond, "Deciding Unique Termination of Permutative Rewrite Systems: Choose -"-

your Term Algebra Carefully," W. Bibel and R. Kowalski (Eds.), Proc. 5th CADE, Napa Valley,
Springer-Verlag, Lecture Notes in Computer Science, Volume 87,1980, pp. 194-208.

[Jouannaud 83] J. P. Jouannaud, C. Kirchner, and H. Kirchner, "Incremental Construction of
Unification Algorithms in Equational Theories," Proc. 10th EATCS Intl. Colloq. on Automata,
Languages, and Programming, Barcelona, 1983, pp. 361-373.

99

. ' - -. ." -. ', - ." - %- - - . .



[Jouannaud 84] J. P. Jouannaud and H. Kirchner. "Completion of a Set of Rules Modulo a Set of
Equations." Technical Note. SRI Intl. Computer Science Laboratory, Menlo Park, CA, April ,'-,
1984.

[Kandri-Rody 851 A. Kandri-Rody. D. Kapur. and P. Narendran, "An Ideal.Theoretic Approach to
Word Problems and Unification Problems over Finitely Presented Commutative Algebras,"
Proc. o! the Conference on Rewriting Techniques and Applications, Dijon, France, 1985,
Springer-Verlag, 1985. to appear

[Kapur 84] D. Kapur and D. R. Musser, "Proof by Consistency," Proc. of an NSF Workshop on the
Rewrite Rule Laboratory. Sept. 6-9. 19S3, General Electric Corporate Research and Develop-
ment Report No. 84GENO08. Schenectady, NY, April 1984, pp. 245-267. .1 .

[Kapur 85] D. Kapur, private communication, 1985.

(Kirchner 81] C. Kirchner and H. Kirchner, "Solving Equations in the Signed Trees Theory," Tech-
nical Report 81-R-056. Centre de Recherche en Informatique de Nancy, UER de Math-
ematiques. Universite de Nancy I, 54037 Nancy Cedex, 1981.

[Kirchner 84a] C. Kirchner, "A New Equational Unification Method: A Generalisation of Martelli-Montanari's Algorithm," CADE, 1984.

[Kirchner 84b] C. Kirchner and H. Kirchner, private communication, 1O94.

[Kirchner 85] C. Kirchner and H. Kirchner, "Methodes et Outils de Conception Systmatique
D'Algorithmes D'Unification dans les Theories Equationalles," Ph.D. Thesis, Centre de
Recherche en Informatique de Nancy. UER de Mathematiques. Universite de Nancy I, 54037
Nancy Cedex, June 1985. -'"'"

[Knuth 70] D. E. Knuth and P. B. Bendix, "Simple Word Problems in Universal Algebras," in J. Leech
(Ed.), Computational Problems in Abstract Algebra, Pergamon, Oxford, 1970, pp. 263-297.

[Kowalski 74] R. A. Kowalski, "Predicate Logic as a Programming Language," Proc. IFIP-74 ..-.

.4 Congress, North-Holland, 1974, pp. 569-574.

[Kownacki 84] R. W. Kownacki, "Semantic Checking of Formal Specifications," Master s Thesis,
MIT Lab. for Computer Science, June 1984.inruUfconlrtm o

[Lankford 84] D. Lankford, G. Butler, and B. Brady, "Abelian Group Unification Algorithms for
Elementary Terms," Proc. of an NSF Workshop on the Rewrite Rule Laboratory, Sept. 6-9,
1983, General Electric Corporate Research and Development Report No. 84GEN008,

* Schenectady, NY, April 1984, pp. 301-318.

[Lescanne 831 P. Lescanne, "Computer Experiments with the REVE Term Rewriting System
Generator," Proc. 10th ACM Symp. on Principles of Programming Languages, Austin, TX,
January 1983, pp. 99-108.

[Liskov 81] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, A. Snyder,
Lecture Notes in Computer Science, Vol. 114: CLU Reference Manual, Springer-Verlag, New." -

.. York, 1981.

[Livesey 76] M. Livesey and J. Siekmann, "Unification of A + C Terms (Bags) and A + C + I Terms ' ''

(Sets)." Technical Report Interner Bericht Nr. 3/76, Institut for Informatik I, UniversitAt
Karlsruhe, 1976.

[Makanin 77] G. S. Makanin, "The Problem of Solvability of Equations in a Free Semigroup," Soviet
Akad., Nauk SSSR, Tom 233,1977. ' - ,

- .:- - -. .. -- .- . . .* - . .*o*-

- ---100 •'•-.'.-,'..''.100

.•o-v



L ~ ~ ~ ~ ~ ~ ~ ~ . . W . -. 7 7 W.~ ~ ' '* . F

[Martelli 82] A. Martelli and U. Montanari, "An Efficient Unification Algorithm," ACM Transactions on
Programming Languages and Systems 4(2):258-282, April 1982.

[Milner 78] R. Milner, "A Theory of Polymorphism in Programming," Journal of Computer and Sys-
tern Sciences 17, pp. 348-375,1978.

[Mitchell 841 J. Mitchell, "Coercion and Type Inference (Summary)," Principal of Programming
Languages, 1984. .. -.-

[Nelson 79] G. Nelson and D. Oppen, "Simplification by Cooperating Decision Procedures," ACM
Transactions on Programming Languages and Systems 1(2):245-257, Oct 1979.

[Paterson 78] M. S. Paterson and M. N. Wegman, "Linear Unification," Journal of Computer and

System Sciences 16, pp. 158-167, 1978.

[Peterson 81] G. E. Peterson and M. E. Stickel, "Complete Sets of Reductions for Some Equational
Theories," Journal of the ACM 28(2):233-264, April 1981.

[Plotkin 72] G. D. Plotkin, "Building-in Equational Theories," in Machine Intelligence, Vol. 7, Halsted
Press, 1972, pp. 73-90.

[Raulefs 78] P. Raulefs and J. Siekmann, "Unification of Idempotent Functions," Technical Report
D-7500 Karlsruhe 1, Institut fur Informatik I, Universitat Karlsruhe, 1978.

[Rety 85] P. Rty, C. Kirchner, H. Kirchner, and P. Lescanne, "Narrower, a New Algorithm for
Unification and its Application to Logic Programming," Proc. of the Conference on Rewriting " "
Techniques and Applications, Dijon, France, 1985, Springer-Verlag, 1985. to appear

[Robinson 65] J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle,"

Journal of the ACM 1 2(1):23-41, January 1965.

[Robinson 71] J. A. Robinson, "Computational Logic: The Unification Computation," in B. Meltzer
and D. Michie (Eds.), Machine Intelligence, Vol. 6, Edinburgh Univ. Press, Edinburgh, Scot-
land, 1971, pp. 63-72.

[Shostak 84] R. E. Shostak, "Deciding Combinations of Theories," Journal of the ACM 31(1):1.12,
January 1984.

[Siekmann 79] J. Siekmann, "Unification of Commutative Terms," Proceedings of the Conference
on Symbolic and Algebraic Manipulation, 1979.

[Siekmann 84] J. Siekmann, "Universal Unification," Proc. 7th CADE, NAPA Valley. CA. Springer- - .
Verlag, 1984, pp. 1-42.

[Slagle 74] J. R. Slagle, "Automated Theorem-Proving for Theories with Simplifiers, Commmutativity .-.-.-. .

and Associativity," JACM 21(4):622-642, October 1974.

[Stickel 81] M. E. Stickel, "A Unification Algorithm for Associative-Commutative Theories," Journal .. "
of the ACM 28(3):423-434, July 1981, Preliminary version in Proc. 4th Intl. Joint Conf. on
Artificial Intelligence, Tbilissi, 1975.

[Szabo 78] P. Szabb "The Undecidability of the DA-Unification Problem," Technical Report,
Universitat Karlsruhe, Institut fur Informatik 1, 1978.

[Tiden 85] E. Tidbn, private communication, 1985.

[Vogel 781 E. Vogel, "Morphismenunifikation," Technical Report, Universitat Karlsruhe, 1978.
Diplomarbeit

101

. .- '.." Le



[Yelick 851 K. Yelick, "Combining Unification Algorithms for Confined Regular Equational
Theories," Proc. of the Conference on Rewriting Techniques and Applications, Dijon, France, *

1985, Springer- Verlag, 1985. to appear

102



S..

V..

-'1:

FILMED
I

4gmi~.

f.

F 
_

L2DTIC


